New drugs, old problems: immune checkpoint inhibitors and cancer-associated thrombosis

Mehrie H. Patel,¹ Alok A. Khorana^{1,2}

¹Department of Hematology-Oncology, Taussig Cancer Institute, Cleveland Clinic; ²Case Comprehensive Cancer Center, Cleveland, OH, United States

Correspondence: Alok A. Khorana, Cleveland Clinic, 10201 Carnegie Ave CA60, Cleveland, OH 44195, United States. Tel.: +1.216.6362690. E-mail: khorana@ccf.org

Conference presentation: paper presented at the 12th International Conference on Thrombosis and Hemostasis Issues in Cancer (17-19 May 2024, Bergamo, Italy).

Key words: venous thromboembolism; arterial thromboembolism; cancer-associated thrombosis; immune checkpoint inhibitors; anticoagulation.

Acknowledgments: Dr. Khorana acknowledges research support from the National Heart, Lung and Blood Institute (U01HL143402; R01HL164516) and the Sondra and Stephen Hardis Chair in Oncology Research.

Contributions: MHP, AAK, analysis and interpretation of data; MHP, drafting the article; AAK, conception and design, critical revision for important intellectual content. All the authors approved the final version to be published.

Conflict of interest: Dr. Khorana acknowledges consulting honoraria from Anthos, Bayer, BMS, Pfizer, Sanofi and WebMD. The other author declares no potential conflict of interest.

Funding: Dr. Khorana acknowledges research support from the National Heart, Lung and Blood Institute (U01HL143402; R01HL164516) and the Sondra and Stephen Hardis Chair in Oncology Research.

Ethical approval and consent to participate: no ethical approval needed.

Availability of data and material: not applicable.

Received: 15 Janaury 2024. Accepted: 28 February 2024.

Publisher's note: all claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

[©]Copyright: the Author(s), 2024 Licensee PAGEPress, Italy Bleeding, Thrombosis and Vascular Biology 2024; 3(s1):113 doi:10.4081/btvb.2024.113

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).

ABSTRACT

A frequent side effect of cancer treatment is venous thromboembolism (VTE), which is made more likely by systemic anticancer medication. Immune checkpoint inhibitors (ICIs) have emerged as a paradigm-shifting treatment for many cancers. Early trials investigating the efficacy of ICIs did not identify thrombosis as a significant adverse event of concern. An initial meta-analysis reported a 1.1% [95% confidence interval (CI) 0.5-2.1] risk of arterial thromboembolism (ATE) and a 2.7% (95% CI 1.8-4.0) rate of vein thrombosis. ICIs have, however, been linked to ATE and VTE in an increasing number of post-marketing investigations. The reported incidence rates of cumulative VTE range from 5-8% at 6 months to 10-12% at 12 months, while the rates of ATE vary from 1-2% at 6 months to 17 months. Furthermore, a number of studies show a correlation between reduced survival and ICI-related thromboembolism. In order to provide a compiled and thorough narrative on the mechanisms, incidence, risk factors, and survival related to ICI-associated VTE and ATE, this narrative review summarizes the literature.

Introduction

Cancer patients have a greater risk of both venous thromboembolism (VTE) and arterial thromboembolism (ATE).¹ Chemotherapy and other anti-cancer therapies increase the risk of VTE, including deep vein thrombosis (DVT), and pulmonary embolism (PE).²⁻⁵ Cancer patients have a four-to-twelve-fold higher incidence of VTE.^{6.7} This risk increases 23-fold in chemotherapy or targeted treatment patients.⁸ ATE includes myocardial infarction, stroke, and peripheral arterial embolism.

The advent of immune checkpoint inhibitors (ICIs) is a paradigm shift in cancer therapeutics. ICIs target programmed cell death protein 1 (PD-1) or its ligand (PD-L1) or cytotoxic T-lymphocyte–associated protein 4 (CTLA-4) to prevent tumor immune evasion.^{1,9} The United States Food and Drug Administration and the European Medicines Agency both granted approval to the first ICI, ipilimumab, in 2011.¹⁰ ICIs are now widely used to treat lung cancer, melanoma, renal cell carcinoma, head and neck cancer, and colorectal cancer subsets.^{9,11} A meta-analysis of these randomized controlled trials (RCTs) found a low 1.1% [95% confidence interval (CI) 0.5-2.1] risk of ATE and a moderate 2.7% (95% CI 1.8-4.0) risk of VTE.¹² Similar rates (VTE rates: 1.5% in melanoma and 1.9% in lung cancer) were also revealed by another meta-analysis of RCTs and prospective studies of ICI use in patients with melanoma and lung cancer.¹³

Here we provide a comprehensive review of the existing data about the occurrence of VTE or ATE in association with ICI therapy of various malignancies. We examine the candidate mechanisms of thrombosis in this setting, provide an overview of the

documented incidence in different cohort studies, and analyze risk factors for thromboembolism in patients receiving ICIs.

Immune checkpoint inhibitors as therapeutics in cancer

ICIs target 'immune checkpoints' stimulatory and inhibitory processes that directly affect immune cells. Homeostatic immune checkpoints balance pro- and anti-inflammatory signals.14 Tumor microenvironment immune cells become anergic due to regulatory T cells recruitment, persistent inflammation, and the production of chemicals such CTLA-4 or PD-L1, which drive immune cell proliferation and evasion. The most researched immunological checkpoints are CTLA-4, PD-1, and PD-L1. T-cell receptors activate T cells.14 T-lymphocytes express CTLA-4 protein receptors, which compete with CD28 to generate cytokines like interleukin (IL)-1. T cells produce less proinflammatory cytokines and have lower overall survival (OS) when CTLA-4 is activated.15

PD-1 is another anti-tumor T-lymphocyte receptor. T-lymphocyte survival, proinflammatory cytokine production, and proliferation are inhibited by PD-1 activation. Tumor cells reduce T-lymphocyte anti-tumor activity by producing PD-L1. ICIs assault cancer cells via CTLA-4 and PD-1/PD-L1 activation.15 A full list of approved ICI agents to date is shown in Table 1.14

Incidence of venous thromboembolism and arterial thromboembolism

ICIs can cause immune-related gastrointestinal, cutaneous, thyroid, or hematological disorders like autoimmune hemolytic anemia or thrombocytopenia collectively known as immune-related adverse events; although initial studies did not recognize VTE or ATE as such.9 The earlier systematic review and metaanalyses of 68 studies (18 retrospective studies and the remaining clinical trials examining the efficacy of ICIs, N=20,273) found 1.1% (95% CI 0.65-1.45%) and 2.7% (95% CI 1.4-5.4%) of ATE and VTE in cancer patients receiving ICIs.12 A recent meta-analysis found that ICI users had no higher risk of VTE than non-ICI users [odds ratio (OR) 0.99, 95% CI 0.82-1.19].16 However, the challenge with relying on RCT data is that RCTs may have underreported thrombosis events.17

Multiple post-marketing cohort studies have examined rates of thromboembolism in patients with various malignancies receiving ICIs, ICI plus chemotherapy, or chemotherapy alone. Table 2 lists ICI patients' VTE and/or ATE characteristics and published study results. A large single-institution study evaluated the incidence of VTE; of 1,686 patients, 404 (24%) experienced VTE during immunotherapy (using an expanded definition of VTE to include visceral thrombotic events). In a similar retrospective study by the Vienna group, of 672 patients, 47 VTE events occurred during a median follow-up of 8.5 months [cumulative incidence 12.9% (95% CI, 8.2-18.5)].1 Another large cohort study of 2854 patients found a VTE rate of 7.4% at 6 months and 13.8% at 1 year.¹⁸ The risk of VTE increased over 4-fold after initiating ICI therapy [hazard ratio (HR) 4.98, 95% CI 3.65-8.59, P<0.001]. DVT risk increased by 5.7-fold (HR 5.70, 95% CI 3.79-8.59, P<0.001) and PE risk increased by 4.75-fold (HR 4.75, 95% CI 3.20-7.10, P<0.001).

Thrombosis in ICI patients was evaluated in three Danish population cohort studies.^{8,19,20} Two reported both ATE and VTE,^{19,20} whereas one reported only VTE.⁸ These studies reported a 2-4% VTE rate at 6 months and a 4-7% rate at 12 months, lower than retrospective studies. The difference in incidence rates may be due to the use of ICD10 codes and/or imaging codes in population research, rather than individual record review.17

Table 1. Immune checkpoint inhibitors listed by generic names, their year of approval (Food and drug administration), and cancers for which they are used.^{15,}

Generic name	Approval year	Indications			
	Anti-CTLA-4 antibody				
Ipilimumab	2011	Melanoma, CRC, RCC			
		Anti-PD-1 antibodies			
Pembrolizumab	2014	Cervical cancer, RCC, urothelial carcinoma, gastroesophageal adenocarcinoma, esophageal cancer, HCC, HNSCC, NSCLC, Hodgkin's lymphoma, large B-cell lymphoma, melanoma, MCC			
Nivolumab	2014	CRC, HCC, HNSCC, Hodgkin's lymphoma, melanoma, NSCLC, SCLC, RCC, urothelial carcinoma			
Cemiplimab	2018	Cutaneous SCC			
Dostarlimab (with chemo)54	2023	Primary advanced or recurrent endometrial cancer that is mismatch repair deficient (dMMR), as determined by an FDA-approved test, or microsatellite instability-high ⁵⁴			
		Anti-PD-L1 antibodies			
Avelumab	2015	MCC, RCC, urothelial carcinoma			
Atezolizumab	2016	Breast cancer, NSCLC, SCLC, MCC, urothelial carcinoma, RCC			
Durvalumab	2016	NSCLC, urothelial carcinoma			

CRC, colorectal cancer; RCC, renal cell carcinoma; HCC, hepatocellular carcinoma; HNSCC, head and neck squamous cell carcinoma; NSCLC, non-small cell lung cancer; MCC, Merkel cell carcinoma; SCLC, small cell lung cancer; SCC, squamous cell carcinoma; PD-L1, programmed cell death protein ligand-1.

However, Mulder *et al.* found that ICI patients had a 6-month cumulative incidence of VTE of 4.1% (95% CI 2.3-6.7%), similar to chemotherapy patients' 3.5%.⁸

These studies show a high frequency or incidence of VTE, although cancer patients in general have high rates of VTE

throughout therapy. Since control groups receiving chemotherapy alone were rarely included, the retrospective cohort studies alone cannot definitively prove an increased risk compared to chemotherapy. A US claims-based study examined VTE risk variables and incidence in advanced lung cancer patients under-

Table 2. Summary of incidence rates of venous and arterial thrombosis from select studies of cancer patients receiving immune checkpoint inhibitors.¹⁷

Study	Country	Study design	N (cohort size)	Type of cancer	Follow-up [Median (IQR)]	VTE incidence % (95% CI)	ATE incidence % (95% CI)
Hegde et al., 201739	USA	Retrospective	76	Lung	10.8 mo	18.4	2.6
Ibrahimi et al., 201755	USA	Retrospective	154	Lung 20.8% Melanoma 20.1% Ovarian 12.3%	7 mo (198 days)	10.4	0
Hsu <i>et al.</i> , 2018 ⁵⁶	Taiwan	Retrospective		fon-small cell lung car (n=24, 48%) Hepatocellular carcino (n=4, 8%)		2	N/A
Bar <i>et al.</i> , 2019 ²⁸	Israel	Retrospective	1215	All cancers Melanoma 40.5% Lung 28.7%	12 mo	AVE (inch stroke, PE, mu 6 mo 12 mc AVE plus s DVT:6 1 12 mc	Itisite DVT): 2.6 3.0 single site no: 4.9
Nichetti <i>et al.</i> , 201947	Italy	Retrospective analysisfrom prospective APOLLO cohort	217	NSCLC	37.8 mo	7.4	6.5
Ando <i>et al.</i> , 2020 ⁴¹	Japan	Retrospective	122	Lung, kidney, stomac urothelial, melanoma	/	4.1 Likely 6 mo rate	4.9
Drobni <i>et al.</i> , 2020 ²⁹	USA	Retrospective	2842	All cancers NSCLC 28.8% Melanoma 27.9%	2 years	N/A	Composite: 5.35/100 person-years MI: 2.49 Stroke: 2.08
Deschênes-Simard <i>et al.</i> , 2021 ⁴⁶	Canada	Retrospective	593	NSCLC	12.7 (4.9-22.7) mo	9.9 (7.5-12.3) 76.5 (59.9-97.8) per 1000 person-years	1.3
Gong <i>et al.</i> , 2021 ¹⁸	USA	Retrospective	2854	All cancers NSCLC 28.4% Melanoma 28.2%	194 days (IQR 65-412	2) 6 mo: 7.4 12 mo: 13.8	N/A
Gutierrez-Sainz et al., 20	21 ⁴⁰ Spain	Retrospective	229	Lung 48% Melanoma 23.6% RCC 11.8%	9.8 mo	7 (4-10)	N/A
Guven <i>et al.</i> , 2021 ⁴⁸	Turkey	Retrospective	133	RCC 26.3% Melanoma 24.1% NSCLC 18.8%	10.1 (5.8-18.5) mo	11.3	N/A
Haist et al., 202157	Germany	Retrospective	280	Melanoma	28 mo (95% CI 23.4-32.6)	12.5	4.3
Hill <i>et al.</i> , 2021 ²⁶	USA	(435 (a) ICI: 171 ICI+chemo: 1 c) chemo then urvalumab: 10	1	N/A	6 mo: (a) 7.6 (4.3-12.2) (b) 9.9 (5.8-15.3) (c) 9.4 (4.8-15.8) 12 mo: (a) 9.0 (5.3-14.0) (b) 12.8 (7.8-19.0) (c) 12.2 (6.8-19.2)	N/A
Icht et al., 202151	Israel	Retrospective	176	NSCLC	6 mo (187 days)	4.5 (2.1-8.3)	N/A

going first-line ICI-, chemotherapy-, or ICI + chemotherapy regimens.²¹ Among 2299 eligible patients (ICI-based, n=605; chemo-based, n=1092; ICI + chemotherapy, n=602) with a median follow-up of 9.1 months, the VTE incidence rates (95% CI) per 100 person-years were 17.8 (95% CI 16.0 to 19.5) overall, 13.5 (95% CI 10.6 to 16.5) for ICI-based, 18.0 (95% CI 15.5 to 20.5) for chemo-based, and 22.4 (95% CI 20.2 to 24.5) for ICI + chemotherapy.²¹ Due to the wide diversity of underlying malignancies, accompanying cancer therapies such as chemotherapy, and variable follow-up periods, thrombosis rates varied quite widely between studies. Overall, VTE incidence was 5-8% at 6 months and 10-15% at 12 months.

In general, retrospective cohort studies showed higher rates than RCTs (1-2% in meta-analysis),^{12,13,17} but not substantially higher when considering the 9-10% 6-month VTE risk in ambulatory cancer patients with a Khorana score of ≥ 2 undergo-

Table 2. Continued from previous page.

	Study	Country	Study design	N (cohort size)	Type of cancer	Follow-up [Median (IQR	VTE incidence % (95% CI)	ATE incidence % (95% CI)
Moik et al., 2021 ¹ Austria Retrospective 672 Melanoma 30.4% NSCLC 24.1% 8.5 mo (2000) 6 mo; 5.0 (3.4-6.9) 6 mo; 12mo; 7.0 (5.1-9.3) 12 mo; 12 (9.62-18.5) Overall (2.1, 2.4, 2.2.1) Mulder et al., 2021 ²⁸ Denmark Population cohort 370 All cancers 6 4.1 (2.3-6.7) 7.1 (4.2-11.1) Roopkumar et al., 2021 ²⁴ USA Retrospective 1686 Lung 49.6% Melanoma 13.2% 438 days (mage 7-1971) 6 mo; 7.1 (2.8 mo (2.8 mo) 11 Sheng et al., 2021 ³⁴ USA Retrospective 351 RCC 12.8 mo 11 Sussman et al., 2021 ⁴⁵ USA Retrospective 228 Melanoma 27.3 mo 6 mo; 13.0 12 mo; 14.9 (9.8-17.7) 12 mo; 12.9 (8.8-13.4) Sussman et al., 2022 ⁴⁶ France Retrospective (A)* NSCLC 16.5 mo 6 mo; 13.0 12 mo; 14.4 Jama et al., 2022 ⁴⁵ Denmark Retrospective (A)* NSCLC 16.5 mo 6 mo; 4.12 (4.2-10.6) 0.0 verall: 14 Grows et al. 2022 ⁴³ Spain Retrospective (B) 120 Lung Vithin 6 mo 2.5 Canovas et al. 2022 ⁴⁴ Japan	Kewan <i>et al.</i> , 2021 ⁵⁰	USA	Retrospective	552		12.1 mo	12.1	1.3
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Madison et al., 202158*	USA	Retrospective	6127	Lung	6 mo	6.3	2.6
cohort 12 7.1 (4.2-11.1) Roopkumar et al., 2021 ²³ USA Retrospective 1686 Lung 49.6% Melanoma 13.2% 438 days (rang 7-1971) 6 mo: 7.1 12 mo: 10.9 Overall: 24 Sheng et al., 2021 ²⁴ USA Retrospective 351 RCC 12.8 mo 11 rotal thromboembolism: 6 mo: 8.0 (49-12.0) 6 mo: 8.0 (49-12.0) 6 mo: 12 mo: 12.9 (8.9-17.7) 12 mo: 12.9 (8.9-17.7) Sussman et al., 2022 ⁴⁹ France Retrospective 481 Lung 9.8 mo 9.8 Bjornhart et al., 2022 ⁴⁹ Denmark Retrospective (481 Lung 9.8 mo 9.8 Bjornhart et al., 2022 ⁴³ Denmark Retrospective (146 prospective (18) NSCLC 16.5 mo 6 mo: 13.0 Canovas et al. 2022 ⁴³ Spain Retrospective 665 Lung 14 mo 6.9 291 Melanoma 17 mo 4.8 A11 7.1 mo 4.8 All thorabosis, 5.8 (3.34-9.18) Retrospective (a) (C1 c05 (b) IC1+chemo: 602 N SCLC 9.1 mo 6 mo: (a) 8.1 (b) 12.8 (12 mo: (a) 13.5 (10.6-16.5) (b) 22.4 (20.2-24.5) May et al. 2022 ¹⁹⁴ <	Moik <i>et al.</i> , 2021 ¹	Austria	Retrospective	672	NSCLC 24.1%	8.5 mo	12mo: 7.0 (5.1-9.3)	6 mo: 1.0 (0.4-2.0) 12 mo: 1.8 (0.7-3.6) Overall 1.8 (0.7-3.6)
Melanoma 13.2% (range 7-1971) 12 mo: 10.9 Overall: 24 Sheng et al., 2021 ³⁴ USA Retrospective 351 RCC 12.8 mo 11 Sussman et al., 2021 ⁴⁵ USA Retrospective 228 Melanoma 27.3 mo 6 mo: 8.0 (4.9-12.0) 6 mo: 12.00; 12 mo; 12.9 (8.9-17.7) 12 mo; 14.4 0.0 verall: 14 6 mo; 13.0 12 mo; 14.4 0.0 verall: 14 12 mo; 14.4 0.0 verall: 14 12 mo; 5.6 0.0 verall: 14 12 mo; 5.6 0.0 verall: 14 12 mo; 5.6 0.0 verall: 16 12 mo; 14.4 12 mo; 14.4 12 mo; 14.4 12 mo; 5.6 0.0 verall: 16 12 mo; 14.4 12 mo; 5.6 0.0 verall: 16 12 mo; 14.4 12 mo; 14.4 12 mo; 5.6 0.0 verall: 16 12 mo; 14.4 12 mo; 14.4 12 mo; 5.6 0.0 verall:	Mulder et al., 2021 ^{8**}	Denmark		370	All cancers			N/A
Total thromboembolism: 6 6 6 6 6 6 6 6 6 6 7 12 mo: 9 8 12 12 12 9 8 6 13 12 mo: 9 8 6 moi 12 mo: 9 8 6 moi 12 mo: 9 8 8 Bjornhart et al., 2023 ⁴² Denmark Retrospective 146 prospective (A) * NSCLC 16.5 mo 6 mo: 13.0 12 mo: 6 mo: 4.9 12 mo: 6 mo: 4.9 12 mo: 6 mo: 4.9 12 mo: 6 mo: 1.4 00 0.9 12 mo: 6 mo: 4.9 12 mo: 6 mo: 1.4 00 1.2 1.4 00 1.2 1.4 00 1.2 1.4 1.0 1.2	Roopkumar et al., 2021 ²⁵	USA	Retrospective	1686	0		12 mo: 10.9	N/A
Alma et al., 2022 ⁴⁹ France Retrospective 481 Lung 9.8 mo 9.8 Bjornhart et al., 2023 ⁴² Denmark Retrospective (A) * 466 prospective (A) * NSCLC 16.5 mo 6 mo : 13.0 12 mo: 14.4 Overall: 14 6 retrospective (B) 426 retrospective (B) NSCLC 16.5 mo 6 mo : 4.9 12 mo: 5.6 Canovas et al. 2022 ⁴³ Spain Retrospective 665 Lung 14 mo 6.9 All thrombosis: 8.4 (6.23-10.6) Endo et al. 2022 ⁴⁴ Japan Retrospective 120 Lung Within 6 mo 2.5 Khorana et al. 2023 ^{21*} USA Retrospective 120 Lung Within 6 mo 2.5 May et al. 2022 ^{20*} USA Retrospective 17 mo 6 mo $(a) 13.5 (10.6-16.5)$ (b) 12.8 12 mo: (a) 13.5 (10.6-16.5) (b) 22.4 (20.2-24.5) Moik et al. 2022 ^{20*} USA Retrospective 1754 All cancers 6 mo 7.3 Moik et al. 2021 ^{19**} Denmark Population 3259 All cancers 6 mo $39(3.3.4.7)$ 1.3 Overvad et al. 2022 ^{10**}	Sheng <i>et al.</i> , 2021 ²⁴	USA	Retrospective	351	RCC	12.8 mo	Total thromboembolism: 6 mo: 4.4 (2.6-6.9)	2
Bjornhart <i>et al.</i> , 2023 ⁴² Denmark Retrospective 146 6 mo: 13.0 426 prospective (A) * 16.5 mo Genvall: 14 426 retrospective (B) NSCLC 16.5 mo 6 mo: 13.0 $2 mo: 14.4$ Overall: 14 6 mo: 4.9 12 mo: 14.4 Canovas <i>et al.</i> 2022 ⁴³ Spain Retrospective 665 Lung 14 mo 6.9 All thrombosis: 8.4 (6.23-10.6) 291 Melanoma 17 mo 4.8 All thrombosis: 8.4 (6.23-10.6) Endo <i>et al.</i> 2022 ⁴⁴ Japan Retrospective 120 Lung Within 6 mo 2.5 Khorana <i>et al.</i> 2023 ^{21*} USA Retrospective 121: 605 N SCLC 9.1 mo 6 mo: (b) IC1+chemo: 602 N SCLC 9.1 mo 6 mo: (a) 8.1 (b) I2.8 12 mo: 13.05 (10.6-16.5) (b) 12.8 12 mo: (a) 13.5 (10.6-16.5) (b) 12.2 ^{ey+4} USA Retrospective 1754 All cancers 6 mo 7.3 Sanfilippo <i>et al.</i> 2022 ²³⁺ USA Retrospective 279 Urothelial 5.6 mo 13 Total	Sussman <i>et al.</i> , 2021 ⁴⁵	USA	Retrospective	228	Melanoma	27.3 mo		6 mo: 2.2 (0.8-4.8) 12 mo: 4.5 (2.3-7.8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Alma et al., 202249	France	Retrospective	481	Lung	9.8 mo	9.8	N/A
291MelanomaAll thrombosis: 8.4 (6.23-10.6) 17 moAll thrombosis: 8.4 (6.23-10.6) 4.8 All thrombosis: 5.8 (3.34-9.18)Endo et al. 2022 ⁴⁴ JapanRetrospective120LungWithin 6 mo2.5Khorana et al. 2023 ^{21*} USARetrospective (a) ICI: 605 (b) ICI+chemo: 602 N SCLC9.1 mo6 mo: (a) 8.1 (b) 12.8 12 mo: (a) 13.5 (10.6-16.5) (b) 22.4 (20.2-24.5)May et al. 2022 ^{59*} USARetrospective1823All cancers6 mo7.3Sanfilippo et al. 2022 ^{27*} USARetrospective1754All cancers6 mo13 Total thromboembolism: 6 mo: 9.1 (6.0-13.0) 12 mo: 13.6 (9.6-18.4)Moik et al. 2021 ^{19**} DenmarkPopulation cohort3259All cancers63.9 (3.3-4.7) 1.21.3 2.5,7 (4.9-6.6) 2.2, 24Overvad et al. 2022 ^{20**} DenmarkPopulation3946All cancers62.6	Bjornhart <i>et al.</i> , 2023 ⁴²	Denmark	pr	ospective (A) * 426		16.5 mo	12 mo: 14.4 Overall: 14 6 mo: 4.9 12 mo: 5.6	N/A
Khorana et al. 2023 ^{21*} USA Retrospective (a) ICI: 605 (b) ICI+chemo: 602 N SCLC 9.1 mo 6 mo: (a) 8.1 (b) 12.8 12 mo: (a) 13.5 (10.6-16.5) (b) 22.4 (20.2-24.5) May et al. 2022 ^{59*} USA Retrospective 1823 All cancers 6 mo 7.3 Sanfilippo et al. 2022 ^{27*} USA Retrospective 1754 All cancers 6 mo 4.1 Sheng et al. 2022 ²³ USA Retrospective 279 Urothelial 5.6 mo 13 Total thromboembolism: 6 mo: 9.1 (6.0-13.0) 12 mo: 13.6 (9.6-18.4) Moik et al. 2021 ^{19**} Denmark Population cohort 3259 All cancers 6 3.9 (3.3-4.7) 1.3 12 Overvad et al. 2022 ^{20**} Denmark Population 3246 All cancers 6 2.6	Canovas <i>et al.</i> 2022 ⁴³	Spain	Retrospective		U	A 17 mo	ll thrombosis: 8.4 (6.23-10 4.8	1
(b) ICI+chemo: (a) 8.1 602 (b) 12.8 12 mo: (a) 13.5 (10.6-16.5) (b) 22.4 (20.2-24.5) (b) 22.4 (20.2-24.5) May et al. 2022 ^{59*} USA Retrospective 1823 All cancers 6 mo 7.3 Sanfilippo et al. 2022 ^{27*} USA Retrospective 1754 All cancers 6 mo 4.1 Sheng et al. 2022 ²³ USA Retrospective 279 Urothelial 5.6 mo 13 Moik et al. 2021 ^{19**} Denmark Population cohort 3259 All cancers 6 3.9 (3.3-4.7) 1.3 Moik et al. 2022 ^{20**} Denmark Population sohort 3259 All cancers 6 3.9 (3.3-4.7) 1.3 Overvad et al. 2022 ^{20**} Denmark Population 3946 All cancers 6 2.6	Endo et al. 202244	Japan	Retrospective	120	Lung	Within 6 mo	2.5	4.2
Sanfilippo et al. 2022^{27*} USA Retrospective 1754 All cancers 6 mo 4.1 Sheng et al. 2022^{23} USA Retrospective 279 Urothelial 5.6 mo 13 Total thromboembolism: 6 mo: 9.1 (6.0-13.0) 12 mo: 13.6 (9.6-18.4) 6 mo 9.1 (6.0-13.0) 12 mo: 13.6 (9.6-18.4) Moik et al. 2021^{19**} Denmark Population cohort 3259 All cancers 6 3.9 (3.3-4.7) 1.3 12 5.7 (4.9-6.6) 2.2 24 7.3 (6.2-8.4) 3.1 Overvad et al. 2022^{20**} Denmark Population 3946 All cancers 6 2.6	Khorana <i>et al</i> . 2023 ²¹ *	USA) ICI+chemo:	N SCLC	9.1 mo	(a) 8.1 (b) 12.8 12 mo: (a) 13.5 (10.6-16.5)	N/A
Sheng et al. 2022^{23} USA Retrospective 279 Urothelial 5.6 mo 13 Total thromboembolism: 6 mo: 9.1 (6.0-13.0) 12 mo: 13.6 (9.6-18.4) $6 \text{ mo: 9.1 (6.0-13.0)}$ 12 mo: 13.6 (9.6-18.4) Moik et al. 2021^{19**} Denmark Population cohort 3259 All cancers 6 $3.9 (3.3 \cdot 4.7)$ 1.3 Overvad et al. 2022^{20**} Denmark Population 3246 All cancers 6 2.6	May et al. 202259*	USA	Retrospective	1823	All cancers	6 mo	7.3	N/A
Total thromboembolism: 6 mo: 9.1 (6.0-13.0) 12 mo: 13.6 (9.6-18.4) Moik et al. 2021 ^{19**} Denmark Population cohort 3259 All cancers 6 3.9 (3.3-4.7) 1.3 12 5.7 (4.9-6.6) 2.2 24 7.3 (6.2-8.4) 3.1 Overvad et al. 2022 ^{20**} Denmark Population 3946	Sanfilippo et al. 2022 ^{27*}	USA	Retrospective	1754	All cancers	6 mo	4.1	N/A
cohort 12 5.7 (4.9-6.6) 2.2 24 7.3 (6.2-8.4) 3.1 Overvad et al. 2022 ^{20**} Denmark Population 3946 All cancers 6 2.6	Sheng <i>et al.</i> 2022 ²³	USA	Retrospective	279	Urothelial	5.6 mo	Total thromboembolism: 6 mo: 9.1 (6.0-13.0)	2
1	Moik <i>et al</i> . 2021 ¹⁹ **	Denmark		3259	All cancers	12	5.7 (4.9-6.6)	1.3 (0.9-1.8) 2.2 (1.7-2.8) 3.1 (2.4-3.8)
	Overvad <i>et al.</i> 2022 ^{20**}	Denmark		3946	All cancers			1.3 1.9

*Outcomes identified by ICD codes; **Outcomes were identified by ICD10 codes +/- imaging codes. CI, confidence interval; MI, myocardial infarction; mo, months; N/A, not available; USA, United States of America. IQR, interquartile range; VTE, venous thromboembolism; ATE, arterial thromboembolism; AVE, acute vascular event; PE, pulmonary embolism; DVT, deep vein thrombosis; NSCLC, non-small cell lung cancer; RCC, renal cell carcinoma; ICI, immune checkpoint inhibitor.

ing chemotherapy.^{17,22} Since ICIs can substantially prolong survival, their use in cancer therapy may increase the risk of thrombosis as a function of exposure time.¹⁷ A study found that metastatic renal cell carcinoma and urothelial carcinoma patients' thrombosis rates plateaued after 30 and 36 months, respectively.^{23,24} This shows that thrombosis risk increases with ICIs therapy duration.

Further, a recent meta-analysis found that combination ICIs increased the incidence of myocardial infarction and VTE in nonsmall cell lung cancer patients.¹³ A different study found that combined-ICIs did not enhance risk.²⁵ Other trials found similar risk of ICI-chemotherapy combination compared to chemotherapy alone,^{26,27} and comparable thrombosis rates.^{17,28} Given the frequent significant baseline differences in these patients, comparing the risks of thrombosis linked with chemotherapy plus ICIs to ICI alone or chemotherapy alone may be problematic.

Arterial thromboembolism incidence

ATE incidence data are scarce. Some studies suggest rates within 1-2% over 6-17 months (Table 2). In a study of various malignancies, ATE incidence at 6 months, 12 months, and 24 months was 1.3 (95% CI 0.9-1.8), 2.2 (95% CI 1.7-2.8), 3.1 (95% CI 2.4-3.8), respectively.¹⁹ In contrast, in a Vienna cohort study, 9 ATE events occurred in 672 patients [cumulative incidence 1.8% (95% CI, 0.7-3.6)].¹ ICIs were associated with three-fold more cardiovascular (CV) events than other anticancer therapies in a matched cohort analysis of 2842 patients by Drobni *et al.* In the same matched cohort study, the comparison of risk increases in before and after ICI use were also similar.²⁹ A recent meta-analysis of 61 studies found that ICI regimens increased ATE risk [odds ratio (OR) 1.58, 95% CI 1.21-2.06].¹⁶ More research is needed to evaluate if reducing and managing CV risk factors can help this population.

Candidate mechanisms and biomarkers

The exact mechanisms of ICI-related thrombosis are not fully understood. ICIs' principal immune-related toxicity mechanisms involve T-cell-mediated autoimmune-like reactions.12 Impaired immunological checkpoints are connected to pro-inflammatory conditions and elevated cytokine levels.9 By boosting pro-inflammatory T cells and macrophages in atherosclerotic plaques, PD-1 blockade accelerates atherogenesis, vascular inflammation, and atherosclerosis.^{30,31} Pre-clinical animal models demonstrate that ICI use promotes atherosclerotic disease, which may increase arterial thrombotic events.9 Activated T cells can also increase tissue factor production by macrophages and monocytes, increasing hypercoagulability.9,32,33 In a pilot translational study, blood samples from 25 patients (15 of whom developed VTE after starting ICIs, and 10 of whom did not) at the time of starting the treatment (ICIs) were analyzed. Results showed pretreatment levels of myeloid-derived suppressor cells (5.382±0.873 vs. 3.341±0.3402, mean±SEM; P=0.0045), IL-8 (221.2±37.53 vs. 111.6±25.36, mean±SEM; P=0.016), and soluble vascular cell adhesion molecule 1 (1210±120.6 vs. 895.5±53.34, mean±SEM; P=0.0385) were significantly higher in patients that developed VTE. These indicators suggest a role for immune-mediated inflammation and shed light on thrombus development in ICI patients.17,25

To maximize patient benefit, limit toxicity, and direct combination therapy, predictive biomarkers are needed. An important study evaluated whether early C-reactive protein (CRP) dynamics could predict ICI-associated VTE.³⁴ In 405 patients, CRP was measured at baseline and every 4 weeks for the first 3 months of ICI therapy. A 2.5-fold spike in CRP indicated a flare, whereas a 50% decline was defined as a response. In a multivariable analysis that included death, an early CRP flare was associated with VTE [HR 3.58 (95% CI 1.07-11.94)]. Patients with CRP response had the lowest VTE risk. In a followup study, early CRP kinetics were also found to serve as a tumor-agnostic predictor of treatment response, progression risk, and mortality.³⁵

A small study of 30 patients receiving ICIs found that a baseline high sensitivity (hs)-troponin T (TnT) \geq 14 ng/L was associated with a higher risk of CV outcomes/primary endpoints, including death, stroke, transient ischemic attack (TIA), PE, and/or heart failure (HF).^{17,36} Therefore, only individuals with hs-TnT \geq 14 ng/L before the first cycle died from stroke/TIA or new-onset HF. Additionally, nine out of thirteen patients with progression of cardiac disease exhibited hs-TnT \geq 14 ng/L before the first cycle (P=.012).³⁶ In another retrospective study of 135 patients receiving first-line pembrolizumab for metastatic cancer, hs-troponin I (TnI) >50 ng/L before the first and second doses was an independent predictor of major adverse cardiac events, such as myocarditis, acute coronary syndrome, HF, VTE, CV hospitalization, and/or mortality (HR 8.1, 95% CI 1.67-37.4) after a mean follow-up of 490 days.³⁷ Before the first pembrolizumab dose, hs-TnI >50 nl/L increased all-cause death risk. In view of these findings, the European Society of Cardiology 2022 cardio-oncology guidelines recommend monitoring cardiac troponin before each ICI cycle.^(17, 38) Table 3 lists candidate biomarkers with their rationales.

Risk factors

Understanding ICI cancer patients' thrombosis risk variables may help identify high-risk patients and target thromboprophylaxis. Multiple cohort studies have attempted to identify risk factors associated with ICI-related VTE (Table 4). In the Vienna

 Table 3. Candidate biomarkers of immune checkpoint inhibitorassociated venous thromboembolism or arterial thromboembolism.

Biomarker	Outcome		
MDSC ²⁵	VTE development after ICI initiation		
IL-8 ²⁵	VTE development after ICI initiation		
sVCAM-1 ²⁵	VTE development after ICI initiation		
Early CRP flare*34	Risk of ICI-associated VTE		
CRP response** ³⁴	Lower risk of ICI-associated VTE		
hs-TnT \geq 14 ng/L*** ³⁶	Higher risk of CV outcomes		

hs-TnI >50 ng/L³⁷ Independent predictor of major cardiac events^ MDSCs, myeloid-derived suppressor cells; VTE, venous thromboembolism; ICI, immune checkpoint inhibitor; IL-8, interleukin-8; sVCAM-1, soluble vascular cell adhesion molecule-1; CRP, C-reactive protein; hs-TnT, high sensitivity troponin T; hs-TnI, high sensitivity troponin I. *CRP flare is when it increases 2.5 times; **CRP response is when it is decreased by 50%; ***baseline hs-TnT \geq 14 ng/L; ^major cardiac events including myocarditis, acute coronary syndrome, heart failure, VTE, cardiovascular hospitalizations and cardiac death. cohort study, a prior VTE history predicted future VTE [sub-distribution HR (SHR), 3.69; 95% CI, 2.00-6.81]. Patient-related factors like: female gender, 39,40 history of thromboembolism, 1,18,28,41-45 vounger age, 18,25,46 smoking, 46,47 and poor Eastern cooperative oncology group status,44,48 history of hypertension) were among the potential risk factors identified.¹⁸ Cancer-related factors like lung cancer,^{28,29} metastasis,^{25,42,49} were also identified. Interestingly, history of melanoma showed a decreased chance of VTE.18 For treatment-related factors: combined ICI use (16.7% vs. 5.0% at 6 months and 21.3% vs. 9.5% at 12 months, respectively; P=0.02),45 combined chemotherapy-ICI use have been identified as risk factors for VTE.^{17,26,27} However, it is still an area of discussion whether ICI combination regimens or ICI chemotherapy regimens increase VTE risk compared to any one medication alone.¹⁷ Also, Sheng et al. concluded that in a cohort of urothelial cancer patients on ICIs are associated with a higher risk of thromboembolism.²³ Drobni et al, studied the use of steroids or statins and found that statins or

corticosteroids can attenuate ICI-induced total aortic plaque volume growth by more than threefold.^{17,29} Although arterial thrombosis data are scarce, studies showed risk variables such as age, diabetes, hypertension, smoking, and a history of CV illness like traditional athrosclerosis.

The Khorana score (KS) has previously been validated to predict risk in heterogenous cancer population receiving systemic therapy. Its value in prediction in an immunotherapy-only cohort has not been fully evaluated. Some studies found KS to predict for risk of VTE^{18,20,45} whereas others did not.^{1,24,26,42,47-51}

Immune checkpoint inhibitors-related thromboembolism and survival

While some studies have found no correlation between thrombosis and poor survival in patients receiving ICIs,^{40,46,48}

Table 4. Select risk factors	for thrombosis identified	in cancer patients receiv	ving immune checkpoint inhibitors.

Study	Risk factors for thrombosis (multivariable	e) ¹⁷ Result highlights
Hegde <i>et al.</i> , 2017 ³⁹	Female	In the multivariate analysis, gender was the only covariate that significantly correlated with thromboembolic events (Female vs. Male HR 3.1, 95% CI 1.02-9.5, P=0.045)
Bar <i>et al.</i> , 2019 ²⁸	NSCLC H/o AVE	Whether using chemotherapy or ICIs, the AVE rate for patients with adenocarcinoma of NSCLC was comparable Two percent (2.6%) of patients experienced AVEs within six months of the start of their ICIs (95% CI 1.8-3.6).
	Hypertension Dyslipidemia	Lung adenocarcinoma, prior AVE, hypertension and dyslipidemia were correlated with AVEs
Nichetti et al., 201947	Current smoker PD-L1 >50% PD-	Smokers (42.9% vs. 23.3%, p = 0.05) [compared to no TE event group] L1 expression >50% (43.3 vs. 18.8%, P=0.01) [compared to no TE event group]
Ando <i>et al.</i> , 2020 ⁴¹	h/o thromboembolism	One risk factor for the incidence of CAT was a history of arterial or venous thromboembolism (ATE or VTE) (odds ratio: 6.36, P=0.039)
Drobni <i>et al.</i> , 2020 ²⁹	Overall study: ICIs, age, h/o stroke, diabetes, hypertension, NSCLC, male, h/o radiation	A matched cohort analysis showed a three-fold increase in CV events after ICI beginning (hazard ratio, 3.3 [95% CI, 2.0-5.5]; P<0.001). At 2 years, CV events increased from 1.37 to 6.55 per 100 person-years in the case-crossover (adjusted hazard ratio, 4.8 [95% CI, 3.5-6.5]; P<0.001). ICIs increased overall aortic plaque volume progression >3-fold (from 2.1%/y before to 6.7%/y after) in the imaging research
Deschênes-Simard <i>et al.</i> 2021 ⁴⁶	., Age <65 Higher PD-L1 level Smoking <12 mo from diagnosis to ICIs	Patients aged <65 (HR =2.00; 95% CI =1.11-3.59) Tumors with PD-L1 between 1-49% (HR =3.36; 95% CI = 1.19-9.50) or >50% (HR =3.22; 95% CI =1.21-8.57) Active smoking (HR =2.00; 95% CI =1.12-3.58) A time lag of less than 12 months between diagnosis and first ICI treatment (HR =2.06; 95% CI =1.09-3.89)
Gong <i>et al.</i> , 2021 ¹⁸	Age ≤65 Khorana score ≥2	After initiating an ICI, the risk of VTE was 7.4% at six months and 13.8% at a year After initiating an ICI, the rate of VTE increased by a factor of four (HR 4.98, 95% CI 3.65-8.59, P<0.001)
	h/o hypertension	Deep vein thrombosis (HR 5.70, 95% CI 3.79-8.59, P<0.001) and pulmonary embolism (HR 4.75, 95% CI 3.20-7.10, P<0.001) were associated with 5.7- and 4.75-fold greater risks, respectively
	Strong trend: h/o VTE (HR 1.42, 95% CI 0.99-2.06) (melanoma is associated with decreased risks)	A history of melanoma and advanced age predicted a decreased risk of VTE, but a higher Khorana risk score, a history of hypertension, and a history of VTE suggested a higher risk when comparing individuals with and without a VTE incident

To be continued on next page

others have.^{1,25,28,45,47} In a large study, Roopkumar *et al.* found that patients on ICIs who developed VTE had decreased OS [HR=1.22 (95% CI 1.06-1.41), P<0.008].²⁵ In the Vienna cohort study, VTE was associated with shorter OS as well (transition HR for death, 3.09; 95% CI, 2.07-4.60).¹ Similarly, another retrospective study showed that VTE was linked to a shorter OS in 219 immunotherapy-treated melanoma patients without brain metastases (median OS 1.3 years *vs.* not reached;P<0.001; HR 3.47 [95% CI, 1.66-7.24]).⁵² Bar J. *et al.* observed a significant link between VTE and shorter survival.²⁸ On the other hand, a study found no correlation between VTE and poor OS [HR 1.33 (95% CI 0.63-2.80), P=0.44],⁴⁰ and another found no correlation between VTE and OS in thrombosis patients [HR 1.18 (95% CI 0.83-1.70), P=0.335.⁴⁶ In a cohort

specifically studying urothelial cancer patients on ICIs, showed that the thromboembolism was associated with lower OS (HR 2.296, P=0.0004) with Bajorin score 1 or 2 (HR 1.490, P=0.0315), and Bajorin score 2 (HR 3.50, P<0.0001).²³ It is unclear whether this association with OS represents a biologic correlation (*i.e.*, VTE is a surrogate for aggressive tumor biology or tumor immune escape mechanisms) or simply an association with higher tumor burden.

Conclusions

ICIs represent a paradigm shift in treatment of malignancy, and their use is only expected to grow in the near future. Results

Table 4. Continued from previous page.

	previous puge.	
Study Ri	sk factors for thrombosis (multivariabl	le) ¹⁷ Result highlights
Gutierrez-Sainz et al., 2021 ⁴	^o Female	Melanoma and female sex were found to be independently l
	Melanoma	inked to a higher incidence of VTE Melanoma was also independently associated with [HR 2.42 (1.20-4.86), P=0.01] shorter OS
Guven <i>et al.</i> , 2021 ⁴⁸	ECOG ≥1	A higher incidence of venous thrombosis was observed in patients (29.3% of patients) with a baseline ECOG performance level of 1 or higher (ECOG ≥1 vs. 0, HR: 3.023, 95% CI: 1.011-9.039, P=0.048)
Hill <i>et al.</i> , 2021 ²⁶	Cancer treatment types (ICI-chemotherapy, targeted therapies) Smoking	Treatment type (P=0.034) Nicotine dependency (P=0.048)
Kewan et al., 202150	Anticoagulation at the time of ICI (univariate) Incidence rate ratio: 2.23a
Moik et al., 20211	h/o VTE	SHR, 3.69; 95% CI, 2.00-6.81
Roopkumar <i>et al.</i> , 2021 ²⁵	Younger age Metastasis Biomarkers	Pretreatment levels of myeloid-derived suppressor cells (5.382 G 0.873 vs. 3.341 G 0.3402, mean G SEM, P=0.0045), interleukin 8 (221.2 G 37.53 vs. 111.6 G 25.36, mean G SEM, P=0.016), and soluble vascular cell adhesion protein 1 (1,210 G 120.6 vs. 895.5 G 53.34, mean G SEM, P=0.0385) were significantly higher in those who developed venous thromboembolism
Sussman <i>et al.</i> , 2021 ⁴⁵	Combination ICI Khorana score ≥1 h/o CAD Anticoagulation at treatment start	Combination ICI (HR 2.70; 95% CI: 1.28 to 5.70; P=0.009) Khorana score ≥1 (HR 2.24; 95% CI: 1.06 to 4.74; P=0.03) History of coronary artery disease HR 2.71; 95% CI: 1.16 to 6.29; P=0.02) Anticoagulation at treatment start (HR 4.14; 95% CI: 1.60 to 10.7; p=0.003)
Alma et al., 2022 ⁴⁹	Metastasis BMI	Metastatic patients (11.1% vs. 1.5%, P=0.015) [univariate analysis] BMI (OR 1.07; 1.01-1.14, P=0.028) [logistic regression]
Bjornhart <i>et al.</i> , 2022 ⁴²	h/o VTE ICI as first-line treatment Other mets (non-brain, liver, bone)	VTE was substantially linked to a lower OS in a multivariate analysis (HR 2.12 CI 95% [1.49-3.03], P<0.0001)
Canovas <i>et al.</i> , 2022 ⁴³ Lung cancer cohort	Hgb <10.9 g/dL at the start of ICI NLR <4.55 h/o thrombosis	HR 2.05; 95% CI: 1.14 to 3.69; P=0.008 [multivariate analysis] HR 2.14; 95% CI: 1.24 to 3.67; P=0.010 [multivariate analysis] HR 2.45; 95% CI: 1.2 to 5.01; P=0.010 [multivariate analysis]
Canovas <i>et al.</i> , 2022 ⁴³ Melanoma cohort	LDH >198 U/L NLR >3.01	HR 4.51; 95% CI: 1.01 to 20.24; P=0.049 [multivariate analysis] HR 3.65; 95% CI: 1.25 to 10.62; P=0.018 [multivariate analysis]
Endo <i>et al.</i> , 2022 ⁴⁴	ECOG ≥ 2 h/o of thromboembolism	OR 3.84; 95% CI: 1.34 to 11.00; P=0.01 OR 6.03; 95% CI: 2.09 to 17.40; P<0.001
Khorana <i>et al.</i> , 2023 ²¹	History of radiation BMI ≥40 kg/m ²	Baseline radiation: HR, 1.25; P=0.03 Severe obesity (BMI ≥40 kg/m2): HR, 1.77; P=0.06
Sanfilippo et al., 202227	ICI-chemotherapy (vs. ICI alone)	ICI-chemotherapy HR =1.75 (95% CI: 1.07-2.83)

HR, hazard ratio; CI, confidence interval; ICI, immune checkpoint inhibitor; AVE, acute vascular event; NSCLC, non-small cell lung cancer; PD-L1, programmed cell death protein ligand-1; TE, thromboembolism; ATE, arterial thromboembolism; VTE, venous thromboembolism; CV, cardiovascular; OS, overall survival; ECOG, eastern cooperative oncology group; CAD, coronary artery disease; Hgb, hemoglobin; h/o, history of; IMDC: International Metastatic Renal Cell Carcinoma Database Consortium; BMI; body mass index; IQR, interquartile range; KS, Khorana score; OR, odds ratio; LDH, lactate dehydrogenase; NLR, neutrophil/lymphocyte ratio.

of multiple recent cohort and population studies indicate a high incidence and/or prevalence of both VTE and ATE in association with ICI therapy, although it is unclear whether this is higher than observed with chemotherapy and whether it is a function of increased exposure time given substantial prolongation in survival with ICI therapy. Ongoing studies are evaluating mechanisms and candidate biomarkers have been identified. The association of ICIrelated VTE/ATE with worsened survival is of particular concern and deserves further investigation as does the benefit of primary thromboprophylaxis.

References

- 1. Moik F, Chan W-SE, Wiedemann S, et al. Incidence, risk factors, and outcomes of venous and arterial thromboembolism in immune checkpoint inhibitor therapy. Blood 2021;137: 1669-78.
- 2. Noble S, Pasi J. Epidemiology and pathophysiology of cancer-associated thrombosis. Br J Canc 2010;102:S2-S9.
- Kessler CM. The link between cancer and venous thromboembolism: a review. Am J Clin Oncol 2009;32:S3-S7.
- Khorana AA, Connolly GC. Assessing risk of venous thromboembolism in the patient with cancer. J Clin Oncol 2009;27: 4839.
- Khorana AA, Dalal MR, Lin J, Connolly GC. Health care costs associated with venous thromboembolism in selected high-risk ambulatory patients with solid tumors undergoing chemotherapy in the United States. Clin Econ Outcomes Res 2013:101-8.
- Khorana AA, Francis CW, Culakova E, et al. Frequency, risk factors, and trends for venous thromboembolism among hospitalized cancer patients. Cancer 2007;110:2339-46.
- Blom JW, Doggen CJ, Osanto S, Rosendaal FR. Malignancies, prothrombotic mutations, and the risk of venous thrombosis. JAMA 2005;293:715-22.
- Mulder FI, Horvàth-Puhó E, van Es N, et al. Venous thromboembolism in cancer patients: a population-based cohort study. Blood 2021;137:1959-69.
- Wang T-F, Khorana AA, Carrier M. Thrombotic complications associated with immune checkpoint inhibitors. Cancers 2021;13:4606.
- Agency EM. Yervoy: Ipilimumab EMA website: EMA. Available from: https://www.ema.europa.eu/en/medicines/human EPAR/yervoy25/07/2011 (updated 16/10/2023)
- Institute CR. Immunomodulators: Checkpoint Inhibitors, Cytokines, Agonists, and Adjuvants Online: Cancer Research Institute;. Available from: https://www.cancerresearch.org /treatment-types/immunomodulators (cited 2023 10/25/2023)
- Solinas C, Saba L, Sganzerla P, Petrelli F. Venous and arterial thromboembolic events with immune checkpoint inhibitors: a systematic review. Thromb Res 2020;196:444-53.
- Giustozzi M, Becattini C, Roila F, et al. Vascular events with immune checkpoint inhibitors in melanoma or non-small cell lung cancer: A systematic review and meta-analysis. Cancer Treat Rev 2021;100:102280.
- Marin-Acevedo JA, Kimbrough EO, Lou Y. Next generation of immune checkpoint inhibitors and beyond. J Hematol Oncol 2021;14:1-29.
- 15. Yoo MJ, Long B, Brady WJ, et al. Immune checkpoint in-

hibitors: An emergency medicine focused review. Am J Emerg Med 2021;50:335-44.

- Ma Z, Sun X, Zhang Y, et al. Risk of thromboembolic events in cancer patients treated with immune checkpoint inhibitors: a meta-analysis of randomized controlled trials. Thromb Haemost 2022;122:1757-66.
- Wang T-F, Carrier M. Immune Checkpoint Inhibitors-Associated Thrombosis: Incidence, Risk Factors and Management. Curr Oncol 2023;30:3032-46.
- Gong J, Drobni ZD, Alvi RM, et al. Immune checkpoint inhibitors for cancer and venous thromboembolic events. Eur J Cancer. 2021;158:99-110.
- Moik F, Ay C, Horváth-Puhó E, et al. Risk of Venous and Arterial Thromboembolic Events in Patients Receiving Targeted Anti-Cancer Therapy—A Nationwide Cohort Study. Proceedings on Int Soc Thromb Haemost Congress, Philadelphia, PA, USA; 2021.
- Overvad TF, Skjøth F, Piazza G, et al. The Khorana score and venous and arterial thrombosis in patients with cancer treated with immune checkpoint inhibitors: A Danish cohort study. J Thromb Haemost 2022;20:2921-9.
- Khorana AA, Palaia J, Rosenblatt L, et al. Venous thromboembolism incidence and risk factors associated with immune checkpoint inhibitors among patients with advanced non-small cell lung cancer. J Immunother Cancer 2023;11.
- 22. Ay C, Dunkler D, Marosi C, et al. Prediction of venous thromboembolism in cancer patients. Blood 2010;116:5377-82.
- 23. Sheng IY, Gupta S, Reddy CA, et al. Thromboembolism in patients with metastatic urothelial cancer treated with immune checkpoint inhibitors. Target Oncol 2022;17:563-9.
- Sheng IY, Gupta S, Reddy CA, et al. Thromboembolism in patients with metastatic renal cell carcinoma treated with immunotherapy. Target Oncol 2021;16:813-21.
- Roopkumar J, Swaidani S, Kim AS, et al. Increased incidence of venous thromboembolism with cancer immunotherapy. Med 2021;2:423-34.e3.
- Hill H, Robinson M, Lu L, et al. Venous thromboembolism incidence and risk factors in non-small cell lung cancer patients receiving first-line systemic therapy. Thromb Res 2021;208:71-8.
- Sanfilippo KM, Luo S, Lyman GH, et al. Identification of Risk Factors for and Development of a Predictive Model for Immunotherapy-Associated Venous Thromboembolism (VTE) in Patients with Non-Small Cell Lung Cancer. Blood 2022;140:2803-4.
- Bar J, Markel G, Gottfried T, et al. Acute vascular events as a possibly related adverse event of immunotherapy: a singleinstitute retrospective study. Eur J Cancer 2019;120:122-31.
- Drobni ZD, Alvi RM, Taron J, et al. Association between immune checkpoint inhibitors with cardiovascular events and atherosclerotic plaque. Circulation 2020;142:2299-311.
- Cochain C, Chaudhari SM, Koch M, et al. Programmed cell death-1 deficiency exacerbates T cell activation and atherogenesis despite expansion of regulatory T cells in atherosclerosis-prone mice. PloS one 2014;9:e93280.
- Bu D-x, Tarrio M, Maganto-Garcia E, et al. Impairment of the programmed cell death-1 pathway increases atherosclerotic lesion development and inflammation. Arterioscler Thromb Vasc Biol 2011;31:1100-7.
- 32. Del Prete G, De Carli M, Lammel RM, et al. Th1 and Th2 T-

helper cells exert opposite regulatory effects on procoagulant activity and tissue factor production by human monocytes. Blood 1995;86:250-7.

- Horio Y, Takamatsu K, Tamanoi D, et al. Trousseau's syndrome triggered by an immune checkpoint blockade in a nonsmall cell lung cancer patient. Eur J Immunol 2018;48: 1764-7.
- 34. Moik F, Riedl J, Barth D, et al. Early dynamics of C-reactive protein predict risk of venous thromboembolism in patients with cancer treated with immune checkpoint inhibitors. Blood 2022;140:1250-1.
- 35. Barth DA, Moik F, Steinlechner S, et al. Early kinetics of C reactive protein for cancer-agnostic prediction of therapy response and mortality in patients treated with immune checkpoint inhibitors: a multicenter cohort study. J Immunother Cancer 2023;11.
- 36. Petricciuolo S, Delle Donne MG, Aimo A, et al. Pre-treatment high-sensitivity troponin T for the short-term prediction of cardiac outcomes in patients on immune checkpoint inhibitors. Eur J Clin Investig 2021;51:e13400.
- Waissengein B, Abu Ata B, Merimsky O, et al. The predictive value of high sensitivity troponin measurements in patients treated with immune checkpoint inhibitors. Clin Res Cardiol 2023;112:409-18.
- Lyon A, López-Fernández T, Couch L, et al. ESC Scientific Document Group. 2022 ESC Guidelines on cardio-oncology developed in collaboration with the European Hematology Association (EHA), the European Society for Therapeutic Radiology and Oncology (ESTRO) and the International Cardio-Oncology Society (IC-OS). Eur Heart J 2022;43: 4229-361.
- Hegde AM, Stroud CRG, Cherry CR, et al. Incidence and impact of thromboembolic events in lung cancer patients treated with nivolumab. Am Soc Clin Oncol 2017:35.
- Gutierrez-Sainz L, Martinez-Marin V, Viñal D, et al. Incidence of venous thromboembolic events in cancer patients receiving immunotherapy: a single-institution experience. Clin Translat Oncol 2021;23:1245-52.
- Ando Y, Hayashi T, Sugimoto R, et al. Risk factors for cancer-associated thrombosis in patients undergoing treatment with immune checkpoint inhibitors. Investig New Drugs 2020;38:1200-6.
- Bjørnhart B, Kristiansen C, Asmussen J, et al. Clinical impact of venous thromboembolism in non-small cell lung cancer patients receiving immunotherapy. Thromb Res 2023;221:164-72.
- 43. Cánovas MS, Garay DF, Moran LO, P et al. Immune checkpoint inhibitors-associated thrombosis in patients with lung cancer and melanoma: a study of the Spanish society of medical oncology (SEOM) thrombosis and cancer group. Clin Translat Oncol2022;24:2010-20.
- 44. Endo S, Honda T, Kawahara T, et al. Profile of metastatic lung cancer patients susceptible to development of thromboembolism during immunotherapy. Cancer Treat Res Commun 2022;31:100547.
- 45. Sussman TA, Li H, Hobbs B, et al. Incidence of thromboembolism in patients with melanoma on immune checkpoint inhibitor therapy and its adverse association with survival. J

Immunother Cancer 2021;9.

- 46. Deschênes-Simard X, Richard C, Galland L, et al. Venous thrombotic events in patients treated with immune checkpoint inhibitors for non-small cell lung cancer: a retrospective multicentric cohort study. Thromb Res 2021;205:29-39.
- Nichetti F, Ligorio F, Zattarin E, et al. Is there an interplay between immune checkpoint inhibitors, thromboprophylactic treatments and thromboembolic events? Mechanisms and impact in non-small cell lung cancer patients. Cancers 2019;12:67.
- 48. Guven DC, Aksun MS, Sahin TK, et al. Poorer baseline performance status is associated with increased thromboembolism risk in metastatic cancer patients treated with immunotherapy. Support Care Cancer 2021;29:5417-23.
- Alma S, Eloi D, Léa V, et al. Incidence of venous thromboembolism and discriminating capacity of Khorana score in lung cancer patients treated with immune checkpoint inhibitors. J Thromb Thrombolysis 2022;54:287-94.
- Kewan T, Ko T, Flores M, et al. Prognostic impact and risk factors of cancer-associated thrombosis events in stage-IV cancer patients treated with immune checkpoint inhibitors. Eur J Haematol 2021;106:682-8.
- Icht O, Darzi N, Shimony S, et al. Venous thromboembolism incidence and risk assessment in lung cancer patients treated with immune checkpoint inhibitors. J Thromb Haemost 2021;19:1250-8.
- Sussman TA, Roopkumar J, Li H, et al. Venous thromboembolism (VTE) in melanoma patients (pts) on immunotherapy (IO). Am Soc Clin Oncol 2020:38.
- Twomey JD, Zhang B. Cancer immunotherapy update: FDAapproved checkpoint inhibitors and companion diagnostics. AAPS J 2021;23:1-11.
- 54. GSK. Jemperli (dostarlimab) plus chemotherapy approved in the US as the first new frontline treatment option in decades for dMMR/MSI-H primary advanced or recurrentendometrial cancer. GSK 2023. Available from: https://www.gsk.com/engb/media/press-releases/jemperli-plus-chemotherapy-approved-in-us-for-new-indication/
- Ibrahimi S, Machiorlatti M, Vesely SK, et al. Incidence of vascular thromboembolic events in patients receiving immunotherapy: a single institution experience. Blood 2017; 130:4864.
- Hsu JC, Lin J-Y, Hsu M-Y, Lin P-C. Effectiveness and safety of immune checkpoint inhibitors: A retrospective study in Taiwan. PLoS One 2018;13:e0202725.
- 57. Haist M, Stege H, Pemler S, et al. Anticoagulation with factor Xa inhibitors is associated with improved overall response and progression-free survival in patients with metastatic malignant melanoma receiving immune checkpoint inhibitors a retrospective, real-world cohort study. Cancers 2021; 13:5103.
- Madison CJ, Melson RA, Conlin MJ, et al. Thromboembolic risk in patients with lung cancer receiving systemic therapy. Br J Haematol 2021;194:179-90.
- May SB, La J, Milner E, et al. Venous Thromboembolism Risk in Cancer Patients Receiving First-Line Immune Checkpoint Inhibitor Vs. Chemotherapy. Blood 2022;140:7968-70.