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EMERGING TRENDS IN CANCER-ASSOCIATED THROMBOSIS (PART I)

Introduction 
Cancer-associated thrombosis (CAT) is now a well-estab-

lished disease entity and is recognized to substantially impact 
the overall survival, morbidity, quality of life and healthcare 
costs of the cancer subpopulation.1-3 Management of cancer itself 
has evolved rapidly since CAT was first described in the 1800s, 
with major breakthroughs in surgical, radiation and medical in-
terventions. However, data suggest that the rates of CAT con-
tinue to rise perhaps reflecting improving diagnostics and/or 
increased survival in patients with cancer, including patients 
treated with novel therapeutic agents such as targeted agents and 
immunotherapies.4,5 Moreover, despite the advances in cancer 
treatment, venous thromboembolism in patients with cancer con-
tinues to be associated with increased mortality in contemporary 
cohorts.6,7

Machine learning (ML) refers to a specialized field of com-
puter science that leverages algorithms to automatically identify 
patterns in data and ultimately perform a task. This approach has 
led to numerous transformative applications in diverse fields 
from voice recognition to virtual assistants, traffic prediction, 
financial market analysis and forecasting, fraud/criminal recog-
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ABSTRACT 
The goal of machine learning (ML) is to create informative 

signals and useful tasks by leveraging large datasets to derive 
computational algorithms. ML has the potential to revolutionize 
the healthcare industry by boosting productivity, enhancing safe 
and effective patient care, and lightening the load on clinicians. 
In addition to gaining mechanistic insights into cancer-associ-
ated thrombosis (CAT), ML can be used to improve patient out-
comes, streamline healthcare delivery, and spur innovation. Our 
review paper delves into the present and potential applications 
of this cutting-edge technology, encompassing three areas: i) 
computer vision-assisted diagnosis of thromboembolism from 
radiology data; ii) case detection from electronic health records 
using natural language processing; iii) algorithms for CAT pre-
diction and risk stratification. The availability of large, well-an-
notated, high-quality datasets, overfitting, limited 
generalizability, the risk of propagating inherent bias, and a lack 
of transparency among patients and clinicians are among the 
challenges that must be overcome in order to effectively develop 
ML in the health sector. To guarantee that this powerful instru-
ment can be utilized to maximize innovation in CAT, clinicians 
can collaborate with stakeholders such as computer scientists, 
regulatory bodies, and patient groups.
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nition and even self-driving vehicles.8 Considerable interest ex-
ists in developing applications of ML in healthcare to enhance 
diagnostic accuracy, improve efficiency, safety and quality, and 
substantially offload physicians. However, the high stakes in-
herent to healthcare as well as limitations intrinsic to ML science 
bring about somewhat unique challenges to its implementation 
in medicine, tempering enthusiasm and progress.9,10 It is essen-
tial that clinicians work in close partnership with computer sci-
entists to ensure that ML models developed are practical, 
unbiased and meet standards required to be integrated into pa-
tient care.  

Applications for ML in the arena of hemostasis and throm-
bosis are growing. In this review, we catalog the potential areas 
where ML can enhance clinical care for patients with thrombotic 
disorders, with a focus on CAT. We also briefly review future 
directions and pitfalls that researchers and clinicians will need 
to be cognizant of as these technologies grow from research 
projects to more practical applications in the clinic. 

 
 

Opportunities for application of machine  
learning to prevention and treatment  
of cancer-associated thrombosis 

Certain features of thrombotic disorders may make these 
diseases particularly suitable to apply ML.11 A training dataset 
is a large pool of data used to adjust a ML model’s parameters 
and learn the underlying patterns in data; subsequently, the 
model is tested on an independent dataset to test its performance, 
known as validation dataset. Thrombotic conditions are rela-
tively common and thus curating real-world datasets for training 
and validation of ML models is potentially feasible. Moreover, 
thrombosis is a frequent complication in cancer patients and fea-
ture-rich datasets already exist that could be targeted to develop 
and use ML models.12,13  

Secondly, although the precise etiology of thrombosis in in-
dividual patients can be hard to pinpoint, there are several po-
tential factors that are often available in electronic health records 
contributing to the risk of thrombosis and thus can be used as 
‘features’ in ML models. Risk factors for CAT are extremely di-
verse and range from patient factors, (such as age and habitus), 
tumor features (such as site and stage), laboratory values, inter-
ventions (including surgery and procedures) as well as systemic 
medications (including cytotoxic chemotherapy, hormonal ther-
apy and targeted agents).14 

The interventions used to prevent and treat thrombotic dis-
orders usually involve anticoagulants, and thus bleeding risk 
needs to be balanced in patients with or at risk for thrombosis. 
Models based on ML can be envisioned to be developed not only 
to calculate risks associated with thrombosis but also bleeding 
and thus facilitate informed and tailored decisions for clinicians 
and patients. Patients with cancer are not only at increased risk 
of thrombosis but also have high rates of major and fatal bleed-
ing, which makes anticoagulation a challenge for clinicians.15,16 
Finally, patients with malignancy are relatively complex and can 
have significant temporal changes in thrombotic and hemor-
rhagic risk factors due to changes in cancer status (disease pro-
gression/recurrent or metastatic disease in critical sites), 
alterations in therapeutic interventions and general health status 
leading to institutionalization or immobilization. Thus, CAT risk 

is dynamic and continuous risk assessment would be beneficial 
to account for variations in risk with time.17  

We identified three specific applications of ML to the re-
search and clinical management of thromboembolism: i) natural 
language processing to optimize automated identification of 
thrombotic complications in patients; ii) computer vision to clas-
sify radiology images; iii) predictive ML modeling for throm-
bosis (Figure 1, Table 1). 

 
 

Natural language processing  
and venous thromboembolism 

Natural Language Processing (NLP) refers to the application 
of ML technology and linguistics to enable computers to auto-
matically interpret, manipulate, and comprehend human lan-
guage.18 Within healthcare, this allows automated interpretation 
of textual data within the electronic health record such as those 
in medical notes or laboratory and radiological reports for ac-
curate case detection that can, in turn, aid surveillance efforts, 
augment hospital triage systems, and allow for automated meas-
urement of quality metrics.19 For computers to analyze human 
language, one can rely on keyword extraction, predetermined 
rule-based technology or more advanced techniques that apply 
ML algorithms to make inferences, all approaches which have 
been studied in text into case-detection algorithms in the elec-
tronic health records.20 Furthermore, with the advent of genera-
tive artificial intelligence technology, such as generative 
pre-trained transformer (also known as GPT) models, there is 
interest in developing NLP applications to reduce burdens and 
time for providers by assisting in tasks such as automation of 
documentation with human review, prepare orders or compute 
and synthesize information from electronic health records and 
medical literature.21,22 

The application of NLP for the detection of thrombotic dis-
orders including deep vein thrombosis (DVT) and pulmonary 
embolism has been developed for over a decade.23-26 Although 
manual extraction is considered the gold standard, this labor-in-
tensive process is not feasible for long-term and continuous case 
extraction. The use of billing or administrative diagnostic codes 
lacks accuracy for VTE detection and compares unfavorably to 
NLP algorithms.27 In a multicenter study that compared NLP to 
manual chart extraction in two orthogonal datasets, the NLP-
based VTE identification system was found to score >90% on 
all performance measures calculated including accuracy, sensi-
tivity, specificity, and positive and negative predictive in both 
datasets.28 This supports that NLP could be a promising tool for 
automated surveillance systems. This technology has also been 
studied for VTE surveillance in specific settings such as post-
surgery, pediatric populations and patients hospitalized with 
COVID-19.29-31  

Various researchers have worked on developing NLP mod-
els that can aid acute CAT case detection within cohorts of pa-
tients with malignancy. Ostensibly CAT may differ from 
thrombosis in the general population given higher patient com-
plexity, cancer-directed medications, more frequent interven-
tions such as central access catheters as well as the high 
prevalence of preexisting thrombosis which could make detec-
tion of recurrent acute events challenging. A transformer NLP 
model utilizing a combination of clinical notes and radiology re-
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ports to detect CAT longitudinally was developed that achieved 
a precision (positive predictive value, PPV) and recall (sensitiv-
ity) of about 93%.32 A separate group demonstrated the success-
ful use of a customized NLP pipeline for clinical notes, used in 
combination with a keyword search of radiology reports and ex-
traction of anticoagulation data from pharmacy records to detect 
VTE events in 14,223 adult patients with solid tumor malig-
nancy.33 Li et al. used a longitudinal single-center retrospective 
dataset of patients with cancer to demonstrate that a combined 
algorithm based on billing codes and anticoagulation with a 
ruled-based NLP classifier had a weighted PPV of 98% and a 
weighted sensitivity of 96%, with a C statistic of 0.98 (95% CI, 
0.97-0.98) that out-performed either approaches individually.34 
This suggests that combining information related to VTE from 
both structured data (billing and procedural codes and laboratory 
results) and unstructured data (such as radiology reports, clinical 
notes) could lead to optimal event detection. The use of NLP to 
detect thrombotic events in more specific oncologic populations 
such as patients undergoing allogenic stem cell transplants has 
also been described.35  

 
 

Machine learning applications for image  
recognition in venous thromboembolism 

Diagnosis of VTE is routinely established by radiological 
investigations including computed tomography angiograms, pul-
monary ventilation perfusion scans and duplex ultrasound for 
extremity DVT.36 This is performed historically with trained 
physicians reviewing imaging visually to identify pathologies 
and make diagnoses. The field of computer vision leverages ML 

algorithms to recognize patterns in imaging data fields that ex-
ceed the limits of the human eye. Those models can be inte-
grated into workflow to improve efficiency.37 Moreover, within 
oncology, ML offers the ability to optimize image acquisition 
sequences to maximize efficiency and reduce radiation exposure 
and costs, develop personalized screening programs for patients, 
create precise and reliable volumetric-based tumor responses to 
guide cancer-directed therapies and potentially elucidate other-
wise imperceptible radiographic patterns to investigate cancer 
biology, as well as predict treatment response (also known as 
‘radiomics’).38 

Given that pulmonary embolism can be clinically misdiag-
nosed or missed in up to one-fourth of patients,39 several groups 
have worked on ML-based automatic detection models for this 
clinical event.38,40,41 A deep learning model (PENet) for auto-
matic detection of pulmonary embolism from volumetric com-
puted tomography (CT) pulmonary angiograms was developed 
that achieved an AUROC of 0.85 [95% CI 0.81-0.87] on an ex-
ternal dataset.42 Such tools can be envisioned to serve as sec-
ondary reading tools and also prioritize scans in radiologist 
review queues to prevent delays in diagnosis. Beyond the detec-
tion of PE, deep learning-based models to quantify clot burden 
are also being developed that have been shown to correlate with 
risk stratification markers in acute pulmonary embolism, includ-
ing right ventricular metrics.43,44 Similarly, ML-based tools have 
been developed for computer-aided diagnosis of DVT, although 
the majority utilize MR/CE-MRI or CT-venography, while the 
most widely employed diagnostic technique is compression ul-
trasound.45-48 Aiming to equip non-specialists to detect DVT, a 
deep learning approach to compression ultrasound images was 
developed and externally validated with a negative predictive 
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Figure 1. Applications for machine learning in cancer-associated thrombosis.
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value of 98-99%. The authors also performed a cost analysis of 
integrating this ML tool into their current diagnostic pathway 
and estimated the net monetary benefits.49 

Studies exploring the role of ML-assisted radiologic diag-
nosis of pulmonary embolism, extremity-associated vein throm-
bosis and thrombosis in unusual sites such as splanchnic and 
cerebral vasculature specifically in patients with underlying can-

cer are pending. However, several potential uses of ML-assisted 
radiological imaging at several stages in the cancer journey in-
cluding screening, disease detection, treatment assessment and 
surveillance have already been identified.50 Surveillance imag-
ing is frequent among patients with malignancy, and ML could 
assist in automated detection of thrombosis in patients where a 
diagnosis is not otherwise suspected. Estimating the composition 
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Table 1. Selected examples of applications of machine learning in cancer-associated thrombosis. 

Study                      Population/    Dataset        Corpus      ML model                                               Metrics 
                               study design       size           datasets                          Precision/       Recall/      C-statistic        NPV        Specificity 
                                                                                                                          PPV        sensitivity             
Natural language processing and venous thromboembolism 

Maghsoudi et al.32       Single center;                             Clinical      ClinicalBERT        0.93                 0.93                   -                      -                      - 
                                     retrospective                               notes;       (Bidirectional 
                                                                                       radiology         Encoder 
                                                                                          notes      Representations  
                                                                                                                  from  
                                                                                                           Transformers)  
                                                                                                          large language  
                                                                                                                 model                    
Dunbar et al.33*           Single center;                             Clinical       Custom NLP            -                      -                      -                      -                      - 
                                     retrospective                                notes                    
Li et al.34‡                    Single center;                           Radiology      Rule based           0.98                 0.96                 0.98                                          - 
                                     retrospective                                notes         NLP pipeline              
Computer vision to identify thrombotic events from radiologic data† 

Huang et al.42†             Retrospective                        CT pulmonary    3D CNN                -                      -            .84 (Internal)            -                      - 
                                    study included                         angiography       (PENet)                                                     .85 (external) 
                                      internal and                                 scans 
                                  external datasets 
Li et al.84†                    Retrospective                        CT pulmonary      CNN +                 -                      -                    0.93                   -                      - 
                                 multicenter study                      angiography       U-NET 
                                                                                          scans                                           
Kainz et al.49†                Prospective                            Ultrasound       Dual-task               -               0.82-0.94               -               0.99-1.00       0.70-0.082 
                                    study included                              videos              CNN                                   (95% CI)                                (95% CI)        (95% CI) 
                                      internal and                                                   (AutoDVT) 
                                  external cohorts 
Machine learning based prediction modeling for venous thromboembolism 

Ferroni et al.59†            Retrospective         608              Tabular     Kernel method           -                      -                    0.72                   -                      - 
Li et al.64†                    Retrospective   Derivation:        Tabular           Logistic                -                      -                    0.68                   -                      - 
                                                                  9,769                                  regression                                                     (0.67-0.69) 
                                                              validation:  
                                                                 79,517 
Muñoz et al.66             Retrospective;      16,407            Tabular           Logistic                -                      -                    0.68                   -                      - 
                                      goal was to                                                     regression                                                      (0.63-0.72) 
                                  predict recurrent                                               and decision                                                    for random 
                                           VTE                                                      trees (individual                                                    forests 
                                                                                                               trees and  
                                                                                                          random forests) 
Verstovsek et al.68††     Retrospective   Derivation:        Tabular      Decision trees           -                      -                    0.84                   -                      - 
                                                                  1,012                             (individual trees 
                                                           validation: 100                         and random  
                                                                                                         survival forests)            
*Model was used to supplement an approach using pharmacological data for therapeutic anticoagulation to identify thrombotic episodes. Performance measures not reported; 
‡algorithm combined billing codes and NLP on radiology reports. Combined approach was found to be better than and NLP or coding algorithm alone; †did not describe sep-
arately patients with cancer; ††neutrophil percentage, lymphocyte percentage and red blood cell distribution width are important predictors in decision trees. ML, machine 
learning; PPV, positive predictive value; NPV, negative predictive value; NLP, natural language processing; CT, computed tomography; CNN, convolutional neural network; 
DVT, deep vein thrombosis; CI, confidence interval.
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of thrombus using artificial intelligence is also an emerging 
method that has shown to be potentially impactful for prognostic 
and therapeutic decision-making in ischemic stroke.51 Such an 
approach can be envisioned in CAT for determinations that have 
therapeutic significance such as to differentiate chronicity of a 
thrombus as well as distinguish between bland thrombus and in-
travascular involvement by tumor.52,53 

 
 

Machine learning for prediction  
of cancer-associated thrombosis 

Modeling the risk of CAT is a potentially impactful appli-
cation of ML given the importance of risk stratification for pro-
phylaxis. The yearly risk of CAT is relatively low overall, with 
a cumulative incidence of less than 10% in most reports.54 An-
ticoagulant prophylaxis in this patient population has not been 
shown to be associated with a significant increase in the risk 
of major bleeding overall, however specific subgroups might 
have a higher risk.55 Monetary costs and inconvenience for pa-
tients constitute additional downsides of pharmacological pro-
phylaxis. In order to maximize net benefit, it is desirable to 
carefully select candidates for thromboprophylaxis, focusing 
on individuals with the highest risk of thrombosis and the low-
est risk of bleeding. ML predictive models could conceivably 
be applied to both sides of this equation in order to optimize 
preventive efforts. 

The first broadly used risk stratification algorithm for CAT 
is the Khorana score.56 Still very prevalent in the clinical arena, 
this clinical prediction rule is derived from a simple logistic re-
gression model. It is easy to use and has been extensively vali-
dated.57 It has been applied in randomized studies of 
pharmacological prophylaxis for CAT, in which a clinical benefit 
was demonstrated in the intervention group.58 However, in gen-
eral, the Khorana score has exhibited disappointing perform-
ance. It does not have an appreciable capacity to discriminate 
thrombosis risk within cancer strata, as the most important pre-
dictor in this model is tumor type. Using a score threshold of 2, 
typically half of patients in a diverse solid cancer cohort will be 
retained for prophylaxis, however, left untreated less than 10% 
of those individuals would go on to develop a CAT episode by 
the 6-month mark.57 

Based on those considerations it becomes evident that im-
proved CAT prediction models are needed. Beyond additive 
models like logistic regression, more advanced algorithms could 
conceivably improve model discrimination and accuracy by 
leveraging complex relationships between predictors. Also, 
doing away with the clinical prediction rule format and switch-
ing to a model deployed directly from the electronic health 
record would allow the inclusion of a far greater number of pre-
dictors than otherwise possible, along with more granularity in 
model inputs. 

In the last few years, several authors have explored varied 
ML algorithms to improve risk prediction for CAT. The ap-
proaches used include additive models (e.g., logistic regression 
and Fine-Gray regression), tree-based models (e.g., random 
forests), kernel methods (e.g., support vector machines), gradi-
ent boosting, ensembles and deep learning.59-69 The predictors 
featured in those models included cancer type and stage, routine 
laboratory test results (e.g., hemoglobin, total white blood cell 

count, etc.), basic demographic characteristics, chemotherapy 
type, circulating procoagulant vesicles, circulating tumor DNA 
levels, germline molecular markers and tumor somatic genetic 
alterations. As a general rule, model discrimination as measured 
with the C-index did not surpass 0.72 in the test set. External 
validation is lacking for most of those studies, with few in-
stances of a satisfactory assessment. 

While the findings above are stimulating, much remains to 
be done to change the paradigm of CAT prediction and preven-
tion. At this juncture, it appears unlikely that more complex 
modeling algorithms using the usual static risk markers will im-
prove model metrics. Incorporating large amounts of omics data, 
unstructured data, novel orthogonal biomarkers or time series 
data of predictors commonly available in the electronic health 
record are all approaches with the potential to move the needle 
further and meaningfully increase the net benefit of pharmaco-
logical prophylaxis for CAT. Survival methods could generate 
CAT incidence predictions which factor in the competing risk 
of death, allowing the clinician to estimate risk at different arbi-
trary time points. Deep learning models can be customized ex-
tensively and offer the added benefit of transfer learning but are 
more technically difficult to implement and require larger 
datasets than other ML algorithms to reach their full potential. 
Model generalizability between locales will remain a challenge 
and federated learning is a promising modality to alleviate pri-
vacy concerns surrounding the sharing of multiple large patient 
datasets. 

 
 

Future challenges for the application  
of machine learning to clinical management 
of cancer-associated thrombosis 

Despite the exciting avenues for ML in clinical medicine, 
researchers and clinicians involved in the development of this 
novel technology need to be mindful of challenges and poten-
tial pitfalls (Table 2).9,53 Although electronic health records do 
contain enormous amounts of data that could be relevant to 
CAT, these are often unstructured and siloed in medical imag-
ing archival systems, pathology systems, documentation fields, 
electronic prescribing tools and insurance databases which 
would need to be processed and unified so they are accessible 
to an algorithm. Moreover, datasets for most current ML stud-
ies in VTE are retrospective and fixed; however, in reality, a 
ML model for thrombosis would need to handle non-stationary 
input data due to changes in clinical, operational practices as 
well as dynamic patient populations and changing individual 
health status. Thus, methods to address dataset shift and update 
models prospectively would need to be built in beforehand to 
ensure optimal performance.70 Prospective testing of these 
computer systems and periodic or continuous performance 
checks are also critical to ensure the models remain accurate 
despite changes in the environment, to detect issues and deploy 
updates to address them. 

Generalizability, so that tools can be utilized outside their 
training environments, is an important goal in developing ML 
applications.71 Moreover, ML algorithms that operate without 
human oversight can be prone to over-fitting or utilization of 
unknown confounders that would not be reliable in a different 
setting or dataset.72 Given that, different institutions can vary 
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widely in clinical practices, record keeping, and technical equip-
ment; this can be a particular challenge in building tools for 
widespread clinical use. Transfer learning is a ML technique that 
allows computer systems to apply knowledge learned from a 
task to be reused to improve performance on related tasks. This 
can save computing and time resources, and thus can be lever-
aged to enhance generalizability.73 Another attractive approach 
that has emerged to improve generalizability is federated learn-
ing. Federated learning can be used to derive a global model 
from several distinct datasets belonging to different organiza-
tions without sharing sensitive clinical data between the partic-
ipants, thus preserving patient privacy.74  

A serious concern is that ML algorithms can contain dis-
criminatory biases, that can inadvertently affect already disad-
vantaged groups in healthcare and enhance health 
inequities.75,76 In order to avoid unintentional bias in ML algo-
rithms that could further worsen existing racial and ethnic dis-
parities in CAT, developers need to be sensitive of potential 
issues in the databases where the models are trained.77,78 Cli-
nicians should also be mindful of testing and evaluating mod-
els by population subgroups (such as race, age, socioeconomic 
strata, or location) before they are deployed. Moreover, rigor-
ous regulatory frameworks need to be developed and updated 
in pace with technological innovation to ensure guardrails are 
in place for the supervised and controlled development of clin-
ical ML models.79,80 Towards this goal, the World Health Or-
ganization recently outlined six key areas for regulation of AI 
in health including transparency, risk management, data vali-
dation, data quality, privacy and collaboration between various 
stakeholders including regulatory agencies, healthcare 
providers and industry partners.81 

There is also concern about reluctance and mistrust among 
clinicians and patients that can be a hurdle to the uptake of ML 
at the bedside. The explainability of a model can be viewed as 
its inner mechanics and behavior being interpretable and under-
standable by human observers. Deep learning models in partic-
ular often feature a large number of parameters which in 
isolation do not have any well-defined meaning, which can lead 
to a perception by users that the algorithm is a “black box”, 
which can decrease confidence in its accuracy and reliability. A 

nationally representative online panel of patients was surveyed 
and found that over half believed that artificial intelligence 
would improve healthcare delivery.82 In a study of paired surveys 
of clinicians and informaticians that focused specifically on di-
agnosis and prevention of VTE, a majority of clinicians (70%) 
and informaticians (58%) indicated that they believed that AI 
can ensure appropriate VTE in hospital prophylaxis. However, 
lack of transparency was the most frequently cited barrier by 
both clinicians and informaticians to the use of AI in clinical 
care of thrombosis.83 Finally, ensuring that ML-based tools built 
for CAT are adequately and rigorously studied prospectively 
with clinically meaningful endpoints (such as recurrent throm-
bosis, major bleeding and mortality) prior to deployment in clin-
ical practice will be essential to ensure that these tools are 
relevant and safe in healthcare and improve patient and physi-
cian trust in their use. 

 
 

Conclusions 
ML has the potential to create impactful changes in clinical 

medicine including cancer-associated thrombosis. NLP can fa-
cilitate VTE case detection from unstructured fields including 
clinical notes and radiological reports to enhance research and 
surveillance activities. Computer vision can optimize detection 
of thrombotic events from radiological data which can de-
crease missed diagnosis and assist radiologists in triaging stud-
ies to avoid treatment delays. Finally, ML algorithms are being 
developed to accurately predict patients’ risk of developing 
CAT, which could in turn be utilized to assign thromboprophy-
laxis to patients who would benefit from this intervention and 
avoid exposing individuals with a higher bleeding risk to un-
necessary anticoagulant administration. Experts and clinicians 
need to familiarize themselves with this novel technology to 
ensure that tools being developed are relevant, safe and mini-
mize the risks of inherent bias during development. ML needs 
to be tested for safety and clinically relevant outcomes under 
the emerging regulatory landscape that can ultimately promote 
safe and effective innovation. Lastly, the ML models need to 
be continuously monitored and periodically retrained. 
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Table 2. Key barriers to building machine learning applications in healthcare. 

Barriers                                     Comments 

Dataset quality                                 Feature rich, well annotated high-quality datasets need to be developed and made publicly available to train models. 
                                                          Testing datasets would ideally be prospective and external to establish validity. 
Evolution of medical care                Predictive and diagnostic models in clinical use should be audited periodically to ensure persistence of satisfactory 
and patient populations over time    performance metrics. Transfer learning and other model updating techniques can be used to fine tune an older model. 
Changes in individual patient          Predictive models should be used to make clinical decisions only for the time period used in the original validation 
medical condition over time             studies. Dynamic modeling should be explored to mitigate loss of predictor information over time. 
Generalizability                                Models need to be developed and validated on diverse datasets to ensure performance is unform across institutions 
                                                          and networks. Transfer learning and Federated learning can be incorporated to ensure generalizability.  
Bias                                                   Preexisting biases within datasets and clinical practice need to be identified to ensure algorithms are not flawed.  
                                                          Machine learning applications need to be evaluated in population subgroups to compare performance.  
Regulatory framework                     Regulatory agencies should work with stakeholders to establish guardrails that can keep up with technology updates t 
                                                          to ensure innovation is safety, efficacy and health equity   
Clinicians mistrust/reluctance          Increased transparency, robust external and prospective validation to establish efficacy and safety and patient and  
                                                          physician education as well as effective and open regulation
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