Platelet transcriptomic changes in myocardial infarction are sex and clinical subtype-related: a step forward towards precision medicine?

Submitted: 28 December 2024
Accepted: 12 February 2025
Published: 11 March 2025
Abstract Views: 4
PDF: 0
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

1. Barrett TJ, Schlamp F, Muller M, et al. Myocardial infarction platelet gene expression signatures in women. J Am Coll Cardiol Basic Trans Science 2024. Online ahead of print. DOI: https://doi.org/10.1016/j.jacbts.2024.10.018
2. Kittleson MM, Hare JM. Molecular signature analysis: using the myocardial transcriptome as a biomarker in cardiovascular disease. Trends Cardiovasc Med 2005;15:130-8. DOI: https://doi.org/10.1016/j.tcm.2005.05.007
3. Kittleson MM, Ye SQ, Irizarry RA, et al. Identification of a gene expression profile that differentiates between ischemic and nonischemic cardiomyopathy. Circulation 2004;110:3444-51. DOI: https://doi.org/10.1161/01.CIR.0000148178.19465.11
4. Liew CC, Dzau VJ. Molecular genetics and genomics of heart failure. Nat Rev Genet 2004;5:811-25. DOI: https://doi.org/10.1038/nrg1470
5. Mohr S, Liew CC. The peripheral-blood transcriptome: new insights into disease and risk assessment. Trends Mol Med 2007;13:422-32. DOI: https://doi.org/10.1016/j.molmed.2007.08.003
6. Margalit O, Somech R, Amariglio N, Rechavi G. Microarray-based gene expression profiling of hematologic malignancies: basic concepts and clinical applications. Blood Rev 2005;19:223-34. DOI: https://doi.org/10.1016/j.blre.2004.11.003
7. Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 2009;10:57-63. DOI: https://doi.org/10.1038/nrg2484
8. Grover A, Sanjuan-Pla A, Thongjuea S, et al. Single-cell RNA sequencing reveals molecular and functional platelet bias of aged haematopoietic stem cells. Nat Commun 2016;7:11075. DOI: https://doi.org/10.1038/ncomms11075
9. Grün D, van Oudenaarden A. Design and analysis of single-cell sequencing experiments. Cell 2015;163:799-810. DOI: https://doi.org/10.1016/j.cell.2015.10.039
10. Rodríguez-Montes L, Ovchinnikova S, Yuan X, et al. Sex-biased gene expression across mammalian organ development and evolution. Science 2023;382:eadf1046. DOI: https://doi.org/10.1126/science.adf1046
11. Simon LM, Edelstein LC, Nagalla S, et al. Human platelet microRNA-mRNA networks associated with age and gender revealed by integrated plateletomics. Blood 2014;123:e37-45. DOI: https://doi.org/10.1182/blood-2013-12-544692
12. Bray PF, McKenzie SE, Edelstein LC, et al. The complex transcriptional landscape of the anucleate human platelet. BMC Genomics 2013;14:1. DOI: https://doi.org/10.1186/1471-2164-14-1
13. Momi S, Gresele P. The role of platelets in atherosclerosis: a historical review. Semin Thromb Hemost 2024. Online ahead of print. DOI: https://doi.org/10.1055/s-0044-1795097
14. Boudreau LH, Duchez AC, Cloutier N, et al. Platelets release mitochondria serving as substrate for bactericidal group IIA-secreted phospholipase A2 to promote inflammation. Blood 2014;124:2173-83. DOI: https://doi.org/10.1182/blood-2014-05-573543
15. Bury L, Gresele P. The amazing genetic complexity of anucleated platelets. Bleeding Thromb Vasc Biol 2022;1:33. DOI: https://doi.org/10.4081/btvb.2022.33
16. Cecchetti L, Tolley ND, Michetti N, et al. Megakaryocytes differentially sort mRNAs for matrix metalloproteinases and their inhibitors into platelets: a mechanism for regulating synthetic events. Blood 2011;118:1903-11. DOI: https://doi.org/10.1182/blood-2010-12-324517
17. Middleton EA, Rowley JW, Campbell RA, et al. Sepsis alters the transcriptional and translational landscape of human and murine platelets. Blood 2019;134:911-23. DOI: https://doi.org/10.1182/blood.2019000067
18. Schubert S, Weyrich AS, Rowley JW. A tour through the transcriptional landscape of platelets. Blood 2014;124:493-502. DOI: https://doi.org/10.1182/blood-2014-04-512756
19. Davizon-Castillo P, Rowley JW, Rondina MT. Megakaryocyte and platelet transcriptomics for discoveries in human health and disease. Arterioscler Thromb Vasc Biol 2020;40:1432-40. DOI: https://doi.org/10.1161/ATVBAHA.119.313280
20. Nassa G, Giurato G, Cimmino G, et al. Splicing of platelet resident pre-mRNAs upon activation by physiological stimuli results in functionally relevant proteome modifications. Sci Rep 2018;8:498. DOI: https://doi.org/10.1038/s41598-017-18985-5
21. Wurtzel JGT, Lazar S, Askari S, et al. Plasma growth factors maintain constitutive translation in platelets to regulate reactivity and thrombotic potential. Blood Adv 2024;8:1550-66. DOI: https://doi.org/10.1182/bloodadvances.2023011734
22. Rowley JW, Schwertz H, Weyrich AS. Platelet mRNA: the meaning behind the message. Curr Opin Hematol 2012;19:385-91. DOI: https://doi.org/10.1097/MOH.0b013e328357010e
23. Liu Z, Avila C, Malone LE, Gnatenko DV, et al. Age-restricted functional and developmental differences of neonatal platelets. J Thromb Haemost 2022;20:2632-45. DOI: https://doi.org/10.1111/jth.15847
24. Caparrós-Pérez E, Teruel-Montoya R, López-Andreo MJ, et al. Comprehensive comparison of neonate and adult human platelet transcriptomes. PLoS One 2017;12:e0183042. DOI: https://doi.org/10.1371/journal.pone.0183042
25. Hézard N, Potron G, Schlegel N, et al. Unexpected persistence of platelet hyporeactivity beyond the neonatal period: a flow cytometric study in neonates, infants and older children. Thromb Haemost 2003;90:116-23. DOI: https://doi.org/10.1055/s-0037-1613607
26. Thibord F, Johnson AD. Sources of variability in the human platelet transcriptome. Thromb Res 2023;231:255-63. DOI: https://doi.org/10.1016/j.thromres.2023.06.009
27. Kammers K, Taub MA, Rodriguez B, et al. Transcriptional profile of platelets and iPSC-derived megakaryocytes from whole-genome and RNA sequencing. Blood 2021;137:959-68. DOI: https://doi.org/10.1182/blood.2020006115
28. Rowley JW, Weyrich AS. Coordinate expression of transcripts and proteins in platelets. Blood 2013;121:5255-6. DOI: https://doi.org/10.1182/blood-2013-03-487991
29. Healy AM, Pickard MD, Pradhan AD, et al. Platelet expression profiling and clinical validation of myeloid-related protein-14 as a novel determinant of cardiovascular events. Circulation 2006;113:2278-84. DOI: https://doi.org/10.1161/CIRCULATIONAHA.105.607333
30. Santilli F, Paloscia L, Liani R, et al. Circulating myeloid-related protein-8/14 is related to thromboxane-dependent platelet activation in patients with acute coronary syndrome, with and without ongoing low-dose aspirin treatment. J Am Heart Assoc 2014;3:e000903. DOI: https://doi.org/10.1161/JAHA.114.000903
31. Eicher JD, Wakabayashi Y, Vitseva O, et al. Characterization of the platelet transcriptome by RNA sequencing in patients with acute myocardial infarction. Platelets 2016;27:230-9. DOI: https://doi.org/10.3109/09537104.2015.1083543
32. Gobbi G, Carubbi C, Tagliazucchi GM, et al. Sighting acute myocardial infarction through platelet gene expression. Sci Rep 2019;9:19574. DOI: https://doi.org/10.1038/s41598-019-56047-0
33. Kok FJ, Hofman A, Witteman JC, et al. Decreased selenium levels in acute myocardial infarction. JAMA 1989;261:1161-4. DOI: https://doi.org/10.1001/jama.1989.03420080081035
34. Vavougios GD, Ntoskas KT, Doskas TK. Impairment in selenocysteine synthesis as a candidate mechanism of inducible coagulopathy in COVID-19 patients. Med Hypotheses 2021;147:110475. DOI: https://doi.org/10.1016/j.mehy.2020.110475
35. Weyrich AS, Schwertz H, Kraiss LW, Zimmerman GA. Protein synthesis by platelets: historical and new perspectives. J Thromb Haemost 2009;7:241-6. DOI: https://doi.org/10.1111/j.1538-7836.2008.03211.x
36. Manne BK, Campbell RA, Bhatlekar S, et al. MAPK-interacting kinase 1 regulates platelet production, activation, and thrombosis. Blood 2022;140:2477-89. DOI: https://doi.org/10.1182/blood.2022015568

How to Cite

Bury, L., Branchini, A., Bernardi, F., & Gresele, P. (2025). Platelet transcriptomic changes in myocardial infarction are sex and clinical subtype-related: a step forward towards precision medicine?. Bleeding, Thrombosis and Vascular Biology, 4(1). https://doi.org/10.4081/btvb.2025.173

Most read articles by the same author(s)

Similar Articles

1 2 > >> 

You may also start an advanced similarity search for this article.