A nitric oxide-donor pravastatin hybrid drug exerts antiplatelet and antiatherogenic activity in mice

Submitted: 9 February 2022
Accepted: 6 May 2022
Published: 23 May 2022
Abstract Views: 4452
PDF: 179
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.


  • Stefania Momi stefaniamomi@gmail.com Division of Internal and Cardiovascular Medicine, Department of Medicine and Surgery, University of Perugia, Italy.
  • Giuseppe Guglielmini Division of Internal and Cardiovascular Medicine, Department of Medicine and Surgery, University of Perugia, Italy.
  • Giulia Ciarroca Taranta Division of Internal and Cardiovascular Medicine, Department of Medicine and Surgery, University of Perugia, Italy.
  • Elisa Giglio Division of Internal and Cardiovascular Medicine, Department of Medicine and Surgery, University of Perugia, Italy.
  • Angela Monopoli NicOx Research Institute, Milan, Italy.
  • Paolo Gresele Division of Internal and Cardiovascular Medicine, Department of Medicine and Surgery, University of Perugia, Italy.

Aim of the present study was to compare the lipid-lowering, antithrombotic and antiatherogenic properties of NCX-6550, nitropravastatin, a nitric-oxide donating derivative of pravastatin, with those of pravastatin in hypercholesterolemic mice. LDL receptor-deficient mice (LDLR–/–) on a normal diet (ND) showed enhanced cholesterol levels as compared to wild type (WT) mice (6.8±1.2 mmol/L and 2.8±0.82 mmol/L, respectively). High fat diet (HFD) induced a large enhancement of cholesterolemia in LDLR–/– mice (23.7±5.7 mmol/L, p<0.0001 vs LDLR–/– ND and WT mice. Treatment with NCX 6550 (48 mg/kg), but not with equimolar pravastatin, reduced cholesterol in LDLR–/–HFD. Platelet adhesion to collagen under high shear rate (3000 sec–1) was significantly higher in LDLR–/– than in normal mice, and further enhanced in LDLR–/–HFD (-27%, p<0.0001 vs untreated). NCX 6550 (48 mg/kg), but not pravastatin, reduced platelet adhesion, especially in LDLR–/–HFD. U46619-induced platelet aggregation ex vivo was also inhibited by NCX 6550 (48 mg/kg) but not by the parent compound. Finally, photochemically-induced acute (1 hr) femoral artery thrombosis and delayed (21 days) intimal thickening was assessed. Thrombus size was larger in LDLR–/– on HFD than in normocholesterolemic mice (0.46±0.04 vs 0.18±0.08 mg) and it was reduced by NCX 6550 (48 mg/kg) (0.08±0.02 mg, p<0.0001), but not by pravastatin (0.4±0.01 mg p=NS). Intimal thickening was greater in hypercholesterolemic than in normal mice (I/M normal=0.53±0.16, LDLR–/–=1.1±0.15, LDLR–/–HFD=1.75 ±0.25). Both NCX 6550 and pravastatin reduced intimal thickening in normal (-95% and -74.5%, respectively) and LDLR–/– mice (-98% and -91%), while in strongly hyperlipidemic animals (LDLR–/–HFD) NCX 6550 was more effective than pravastatin (-98% vs -65%, p<0.0001). NCX 6550 shows greater antithrombotic and antiatherogenic activity than pravastatin in highly hypercholesterolemic mice.



PlumX Metrics


Download data is not yet available.


Ross R. Atherosclerosis -- an inflammatory disease. N Engl J Med 1999;340:115-26. DOI: https://doi.org/10.1056/NEJM199901143400207
Getz GS, Reardon CA. Diet and murine atherosclerosis. Arterioscler Thromb Vasc Biol 2006;26:242-9. DOI: https://doi.org/10.1161/01.ATV.0000201071.49029.17
Carmeliet P, Moons L, Collen D. Mouse models of angiogenesis, arterial stenosis, atherosclerosis and homeostasis. Cardiovasc Res 1998;39:8-33. DOI: https://doi.org/10.1016/S0008-6363(98)00108-4
Davì G, Gresele P, Violi F, et al. Diabetes mellitus, hypercholesterolemia, and hypertension but not vascular disease per se are associated with persistent platelet activation in vivo. Evidence derived from the study of peripheral arterial disease. Circulation 1997;96:69-75. DOI: https://doi.org/10.1161/01.CIR.96.1.69
Podrez EA, Byzova TV, Febbraio M, et al. Platelet CD36 links hyperlipidemia, oxidant stress and a prothrombotic phenotype. Nat Med 2007;13:1086-95. DOI: https://doi.org/10.1038/nm1626
Hansson GK. Immune mechanisms in atherosclerosis. Arterioscler Thromb Vasc Biol 2001;21:1876–90. DOI: https://doi.org/10.1161/hq1201.100220
Papanicolaou DA, Vgontzas AN. Editorial. Interleukin-6: the endocrine cytokine. J Clin Endocrinol Metab 2000;85:1331–2. DOI: https://doi.org/10.1210/jcem.85.3.6582
Wierzbicki AS, Poston R, Ferro A. The lipid and non-lipid effects of statins. Pharmacol Ther 2003;99:95-112. DOI: https://doi.org/10.1016/S0163-7258(03)00055-X
Blum A, Shamburek R. The pleiotropic effects of statins on endothelial function, vascular inflammation, immunomodulation and thrombogenesis. Atherosclerosis 2009;203:325-30. DOI: https://doi.org/10.1016/j.atherosclerosis.2008.08.022
Feron O, Dessy C, Moniotte S, et al. Hypercholesterolemia decreases nitric oxide production by promoting the interaction of caveolin and endothelial nitric oxide synthase. J Clin Invest 1999;103:897-905. DOI: https://doi.org/10.1172/JCI4829
Maxwell AJ. Mechanism of dysfunction of the nitric oxide pathway in vascular disease. Nitric oxide: Biol Chem 2002;6:101-24. DOI: https://doi.org/10.1006/niox.2001.0394
Gresele P, Momi S, Migliacci R. Endothelium, venous thromboembolism and ischemic cardiovascular events. Thromb Haemost 2010;103:56-61. DOI: https://doi.org/10.1160/TH09-08-0562
Greenwood J, Mason JC. Statins and the vascular endothelial inflammatory response. Trends Immunol 2007;28:88-98. DOI: https://doi.org/10.1016/j.it.2006.12.003
Laufs U, Liao JK. Post-trascriptional regulation of endothelial nitric oxide synthase mRNA stability by Rho GTPase. J Biol Chem 1998;273:24266-71. DOI: https://doi.org/10.1074/jbc.273.37.24266
Park KY, Heo TH. Combination therapy with cilostazol and pravastatin improves antiatherogenic effects in low-density lipoprotein receptor knockout mice. Cardiovasc Ther 2018;36:e12476. DOI: https://doi.org/10.1111/1755-5922.12476
Momi S, Monopoli A, Alberti PF, et al. Nitric oxide enhances the anti-inflammatory and anti-atherogenic activity of atorvastatin in a mouse model of accelerated atherosclerosis. Cardiovasc Res 2012;94: 428-38. DOI: https://doi.org/10.1093/cvr/cvs100
Ridker PM, Pradhan A, MacFadyen JG, et al. Cardiovascular benefts and diabetes risks of statin therapy in primary prevention: an analysis from the JUPITER trial. Lancet 2012;380:565-71. DOI: https://doi.org/10.1016/S0140-6736(12)61190-8
Ongini E, Impagnatiello F, Bonazzi A, et al. Nitric oxide (NO)-releasing statin derivatives, a class of drugs showing enhanced antiproliferative and antiinflammatory properties. Proc Natl Acad Sci USA 2004;101:8497-502. DOI: https://doi.org/10.1073/pnas.0401996101
Dever G, Spickett CM, Kennedy S, et al. The nitric oxide-donating pravastatin derivative, NCX 6550 [(1S-[1(S*,S*),2,6,8-(R*),(8a]]-1,2,6,7,8,8a-Hexahydro,,6-trihydroxy-2-methyl-8-(2-methyl-1-oxobutoxy-1-naphtalene-heptanoic Acid 4-(Nitrooxy)butyl Ester)], reduces splenocyte adhesion and reactive oxygen species generation in normal and atherosclerotic mice. J Pharmacol Exp Ther 2007;320:419-26. DOI: https://doi.org/10.1124/jpet.106.109298
Rossiello MR, Momi S, Caracchini R, et al. A novel nitric oxide-releasing statin derivative exerts an antiplatelet/antithrombotic activity and inhibits tissue factor expression. J Thromb Haemost 2005;3:2554-62. DOI: https://doi.org/10.1111/j.1538-7836.2005.01605.x
Emanueli C, Monopoli A, Kraenkel N, et al. Nitropravastatin stimulates reparative neovascularization and improves recovery from limb ischemia in type-1 diabetic mice. Brit J Pharmacol 2007;150: 873-82. DOI: https://doi.org/10.1038/sj.bjp.0707142
Kaddai V, Gonzalez T, Bolla M, et al. The nitric oxide-donating derivative of acetylsalicylic acid, NCX 4016, stimulates glucose transport and glucose transporters translocation in 3T3-L1 adipocytes. Am J Physiol Endocrinol Metab 2008;295:E162-9. DOI: https://doi.org/10.1152/ajpendo.00622.2007
Pieper GM, Siebeneich W, Olds CL, et al. Vascular protective actions of a nitric oxide aspirin analog in both in vitro and in vivo models of diabetes mellitus. Free Radic Biol Med 2002;32:1143-56. DOI: https://doi.org/10.1016/S0891-5849(02)00832-8
Pretorius M, Brown NJ. Endogenous nitric oxide contributes to bradykinin-stimulated glucose uptake but attenuates vascular tissue-type plasminogen activator release. J Pharmacol Exp Ther 2010;332:291-7. DOI: https://doi.org/10.1124/jpet.109.160168
Freeman DJ, Norrie J, Sattar N, et al. Pravastatin and the development of diabetes mellitus: evidence for a protective treatment effect in the West of Scotland Coronary Prevention Study. Circulation 2001;103:357-62. DOI: https://doi.org/10.1161/01.CIR.103.3.357
Ishibashi S, Brown MS, Goldstein JL, et al. Hypercholesterolemia in low density lipoprotein receptor knockout mice and its reversal by adenovirus-mediated gene delivery. J Clin Invest 1993;92:883-93. DOI: https://doi.org/10.1172/JCI116663
Momi S, Pitchford SC, Alberti PF, et al. Nitroaspirin plus clopidogrel versus aspirin plus clopidogrel against platelet thromboembolism and intimal thickening in mice. Thromb Haemost 2005;93:535-43. DOI: https://doi.org/10.1160/TH04-07-0464
Sixma JJ, de Groot PG, van Zanten H, Ijsseldijk M. A new perfusion chamber to detect platelet adhesion using a small volume of blood. Thromb Res 1988;92:43-6. DOI: https://doi.org/10.1016/S0049-3848(98)00159-5
Kikuchi S, Umemura K, Kondo K, et al. Photochemically induced endothelial injury in the mouse as a screening model for inhibitors of vascular intimal thickening. Arterioscler Thromb Vasc Biol 1998;18:1069-78. DOI: https://doi.org/10.1161/01.ATV.18.7.1069
Momi S, Falcinelli E, Giannini S, et al. Loss of matrix metalloproteinase 2 in platelets reduces arterial thrombosis in vivo. J Exp Med 2009;206:2365-79. DOI: https://doi.org/10.1084/jem.20090687
Momi S, Caracchini R, Falcinelli E, et al. Stimulation of platelet nitric oxide production by nebivolol prevents thrombosis. Arterioscler Thromb Vasc Biol 2014;34:820-9. DOI: https://doi.org/10.1161/ATVBAHA.114.303290
Huo Y, Schober A, Forlow SB, et al. Circulating activated platelets exacerbate atherosclerosis in mice deficient in apolipoprotein E. Nat Med 2003;9:61-7. DOI: https://doi.org/10.1038/nm810
Momi S, Impagnatiello F, Guzzetta M, et al. NCX 6560, a nitric oxide-releasing derivative of atorvastatin, inhibits cholesterol biosynthesis and shows anti-inflammatory and anti-thrombotic properties. Eur J Pharmacol 2007;570:115-24. DOI: https://doi.org/10.1016/j.ejphar.2007.05.014
Davì G, Patrono C. Platelet activation and atherothrombosis. N Engl J Med 2007;357:2482-94. DOI: https://doi.org/10.1056/NEJMra071014
Braunwald E, Angiolillo D, Bates E, et al. The problem of persistent platelet activation in acute coronary syndromes and following percutaneous coronary intervention. Clin Cardiol 2008;31:117-20. DOI: https://doi.org/10.1002/clc.20363
Vilahur D, Duran X, Juan-Babot O, et al. Antithrombotic effects of saratin on human atherosclerotic plaques. Thromb Haemost 2004;92:191-200. DOI: https://doi.org/10.1160/TH03-11-0687
Amoruso A, Bardelli C, Fresu LG, et al. The nitric oxide-donating pravastatin, NCX 6550, inhibits cytokine release and NF-κB activation while enhancing PPARγ expression in human monocyte/macrophages. Pharmacol Res 2010;62:391-9. DOI: https://doi.org/10.1016/j.phrs.2010.07.006
Vandeplassche G, Bernier M, Kusama BM. Siglet oxigen and myocardial injury: ultrastructural, cytochemical and electrocardiographic consequences of photoactivation of rose Bengal. J Mol Cell Cardiol 1990;22:287-301. DOI: https://doi.org/10.1016/0022-2828(90)91462-G
Gresele P, Falcinelli E, Momi S. Potentiation and priming of platelet activation: a potential target for antiplatelet therapy. Trends Pharmacol Sci 2008;29:352-60. DOI: https://doi.org/10.1016/j.tips.2008.05.002
Krotz F, Sohn HY, Pohl U. Reactive oxygen species: players in the platelet game. Aterioscler Thromb Vasc Biol 2004;24:1988-96. DOI: https://doi.org/10.1161/01.ATV.0000145574.90840.7d
Carmena R, Betteridge DJ. Diabetogenic Action of Statins: Mechanisms. Curr Atheroscler Rep 2019;21:23. DOI: https://doi.org/10.1007/s11883-019-0780-z
Chen YH, Yang YC, Chen W, et al. Risk of macrovascular complications in statin-treated patients developing diabetes. Diabetes Res Clin Pract 2019;157:107870. DOI: https://doi.org/10.1016/j.diabres.2019.107870
Wang HM, Gao JH, Lu JL. Pravastatin improves atherosclerosis in mice with hyperlipidemia by inhibiting TREM-1/DAP12. Eur Rev Med Pharmacol Sci 2018;22:4995-5003.
Solheim S, Seljeflot I, Arnesen H, et al. Reduced levels of TNF alpha in hypercholesterolemic individuals after treatment with pravastatin for 8 weeks. Atherosclerosis 2001;157:411-5. DOI: https://doi.org/10.1016/S0021-9150(00)00725-5
Akash MSH, Rehman K, Liaqat A. Tumor Necrosis Factor-Alpha: Role in Development of Insulin Resistance and Pathogenesis of Type 2 Diabetes Mellitus. J Cell Biochem 2018;119:105-10. DOI: https://doi.org/10.1002/jcb.26174
Muscara MN, Lovren F, McKnight W, et al. Vasorelaxant effects of a nitric oxide-releasing aspirin derivative in normotensive and hypotensive rats. Br J Pharmacol 2001;133:1314-22. DOI: https://doi.org/10.1038/sj.bjp.0704209
Gresele P, Marzotti S, Guglielmini G, et al. Hyperglycemia-induced platelet activation in type 2 diabetes is resistant to aspirin but not to a nitric oxide-donating agent. Diabetes Care 2010;33:1262-8. DOI: https://doi.org/10.2337/dc09-2013

How to Cite

Momi, S. ., Guglielmini, G., Ciarroca Taranta, G., Giglio, E., Monopoli, A., & Gresele, P. (2022). A nitric oxide-donor pravastatin hybrid drug exerts antiplatelet and antiatherogenic activity in mice. Bleeding, Thrombosis and Vascular Biology, 1(2). https://doi.org/10.4081/btvb.2022.19