The amazing genetic complexity of anucleated platelets


Submitted: 1 April 2022
Accepted: 9 June 2022
Published: 15 July 2022
Abstract views:
115


PDF:
40
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

  • Loredana Bury Department of Medicine and Surgery, Section of Internal and Cardiovascular Medicine, University of Perugia, Italy.
  • Paolo Gresele Department of Medicine and Surgery, Section of Internal and Cardiovascular Medicine, University of Perugia, Italy.

Not available


Rowley JW, Oler AJ, Tolley ND, et al. Genome-wide RNA-seq analysis of human and mouse platelet transcriptomes. Blood 2011;118:e101-11. DOI: https://doi.org/10.1182/blood-2011-03-339705

Londin ER, Hatzimichael E, Loher P, et al. The human platelet: strong transcriptome correlations among individuals associate weakly with the platelet proteome. Biol Direct 2014;9:3. DOI: https://doi.org/10.1186/1745-6150-9-3

Kahr WH, Hinckley J, Li L, et al. Mutations in NBEAL2, encoding a BEACH protein, cause gray platelet syndrome. Nat Genet 2011;43:738-40. DOI: https://doi.org/10.1038/ng.884

Weyrich AS, Dixon DA, Pabla R, et al. Signal-dependent translation of a regulatory protein, Bcl-3, in activated human platelets. Proc Natl Acad Sci USA 1998;95:5556-61. DOI: https://doi.org/10.1073/pnas.95.10.5556

Lindemann S, Tolley ND, Dixon DA, et al. Activated platelets mediate inflammatory signaling by regulated interleukin 1beta synthesis. J Cell Biol 2001;154:485-90. DOI: https://doi.org/10.1083/jcb.200105058

Weyrich AS, Schwertz H, Kraiss LW, Zimmerman GA. Protein synthesis by platelets: historical and new perspectives. J Thromb Haemost 2009;7:241-6. DOI: https://doi.org/10.1111/j.1538-7836.2008.03211.x

Denis MM, Tolley ND, Bunting M, et al. Escaping the nuclear confines: signal-dependent pre-mRNA splicing in anucleate platelets. Cell 2005;122:379-91. DOI: https://doi.org/10.1016/j.cell.2005.06.015

Nassa G, Giurato G, Cimmino G, et al. Splicing of platelet resident pre-mRNAs upon activation by physiological stimuli results in functionally relevant proteome modifications. Sci Rep 2018;8:498. DOI: https://doi.org/10.1038/s41598-017-18985-5

Mills EW, Green R, Ingolia NT. Slowed decay of mRNAs enhances platelet specific translation. Blood 2017;129:e38-48. DOI: https://doi.org/10.1182/blood-2016-08-736108

Cecchetti L, Tolley ND, Michetti N, et al. Megakaryocytes differentially sort mRNAs for matrix metalloproteinases and their inhibitors into platelets: a mechanism for regulating synthetic events. Blood 2011;118:1903-11. DOI: https://doi.org/10.1182/blood-2010-12-324517

Bray PF, McKenzie SE, Edelstein LC, et al. The complex transcriptional landscape of the anucleate human platelet. BMC Genomics 2013;14:1. DOI: https://doi.org/10.1186/1471-2164-14-1

Dahiya N, Sarachana T, Vu L, et al. Platelet MicroRNAs: an overview. Transfus Med Rev 2015;29:215-9. DOI: https://doi.org/10.1016/j.tmrv.2015.08.002

Alhasan AA, Izuogu OG, Al-Balool HH, et al. Circular RNA enrichment in platelets is a signature of transcriptome degradation. Blood. 2016;127:e1-e11. DOI: https://doi.org/10.1182/blood-2015-06-649434

Preußer C, Hung L-H, Schneider T, et al. Selective release of circRNAs in platelet-derived extracellular vesicles. J Extracell Vesicles 2018;7:1424473. DOI: https://doi.org/10.1080/20013078.2018.1424473

Yan S, Liu X, Ke X, et al. Screening on platelet LncRNA expression profile discloses novel residual platelet reactivity biomarker. Int J Lab Hematol 2020;42:661-8. DOI: https://doi.org/10.1111/ijlh.13261

Kaudewitz D, Skroblin P, Bender LH, et al. Association of MicroRNAs and YRNAs with platelet function. Circ Res 2016;118:420-32. DOI: https://doi.org/10.1161/CIRCRESAHA.114.305663

Raghavachari N, Xu X, Harris A, et al. Amplified expression profiling of platelet transcriptome reveals changes in arginine metabolic pathways in patients with sickle cell disease. Circulation 2007;115:1551-62. DOI: https://doi.org/10.1161/CIRCULATIONAHA.106.658641

Lood C, Amisten S, Gullstrand B, et al. Platelet transcriptional profile and protein expression in patients with systemic lupus erythematosus: upregulation of the type I interferon system is strongly associated with vascular disease. Blood 2010;116:1951-7. DOI: https://doi.org/10.1182/blood-2010-03-274605

Eicher JD, Wakabayashi Y, Vitseva O, et al. Characterization of the platelet transcriptome by RNA sequencing in patients with acute myocardial infarction. Platelets 2016;27:230-9. DOI: https://doi.org/10.3109/09537104.2015.1083543

Davizon-Castillo P, McMahon B, Aguila S, et al. TNF-α-driven inflammation and mitochondrial dysfunction define the platelet hyperreactivity of aging. Blood 2019;134:727-40. DOI: https://doi.org/10.1182/blood.2019000200

Campbell RA, Franks Z, Bhatnagar A, et al. Granzyme A in human platelets regulates the synthesis of proinflammatory cytokines by monocytes in aging. J Immunol 2018;200:295-304. DOI: https://doi.org/10.4049/jimmunol.1700885

Middleton EA, Rowley JW, Campbell RA, et al. Sepsis alters the transcriptional and translational landscape of human and murine platelets. Blood 2019;134:911-23. DOI: https://doi.org/10.1182/blood.2019000067

Nührenberg TG, Stöckle J, Marini F, et al. Impact of high platelet turnover on the platelet transcriptome: Results from platelet RNA-sequencing in patients with sepsis. PLoS One 2022;17:e0260222. DOI: https://doi.org/10.1371/journal.pone.0260222

Manne BK, Denorme F, Middleton EA, et al. Platelet gene expression and function in patients with COVID-19. Blood 2020;136:1317-29. DOI: https://doi.org/10.1182/blood.2020007214

Ji W, Chen L, Yang W, et al. Transcriptional landscape of circulating platelets from patients with COVID-19 reveals key subnetworks and regulators underlying SARS-CoV-2 infection: implications for immunothrombosis. Cell Biosci 2022;12:15. DOI: https://doi.org/10.1186/s13578-022-00750-5

Marcantoni E, Allen N, Cambria MR, et al. Platelet Transcriptome Profiling in HIV and ATP-Binding Cassette Subfamily C Member 4 (ABCC4) as a Mediator of Platelet Activity. JACC Basic Transl Sci 2018;3:9-22. DOI: https://doi.org/10.1016/j.jacbts.2017.10.005

Campbell RA, Schwertz H, Hottz ED, et al. Human megakaryocytes possess intrinsic antiviral immunity through regulated induction of IFITM3. Blood 2019;133:2013-26. DOI: https://doi.org/10.1182/blood-2018-09-873984

Zhang S, Liu Y, Wang X, et al. SARS-CoV-2 binds platelet ACE2 to enhance thrombosis in COVID-19. J Hematol Oncol 2020;13:120. DOI: https://doi.org/10.1186/s13045-020-00954-7

Zaid Y, Puhm F, Allaeys I, et al. Platelets Can Associate with SARS-Cov-2 RNA and Are Hyperactivated in COVID-19. Circ Res 2020;127:1404-18. DOI: https://doi.org/10.1161/CIRCRESAHA.120.317703

Bury L, Camilloni B, Castronari R, et al. Search for SARS-CoV-2 RNA in platelets from COVID-19 patients. Platelets 2021;32:284-7. DOI: https://doi.org/10.1080/09537104.2020.1859104

Real F, Capron C, Sennepin A, et al. Platelets from HIV-infected individuals on antiretroviral drug therapy with poor CD4+ T cell recovery can harbor replication-competent HIV despite viral suppression. Sci Transl Med 2020;12:6263. DOI: https://doi.org/10.1126/scitranslmed.aat6263

Koupenova M, Corkrey HA, Vitseva O, et al. The role of platelets in mediating a response to human influenza infection. Nat Commun 2019;10:1780. DOI: https://doi.org/10.1038/s41467-019-09607-x

Simon AY, Sutherland MR, Pryzdial EL. Dengue virus binding and replication by platelets. Blood 2015;126:378-85. DOI: https://doi.org/10.1182/blood-2014-09-598029

Best MG, Sol N, Kooi I, et al. RNA-Seq of Tumor-Educated Platelets Enables Blood-Based Pan-Cancer, Multiclass, and Molecular Pathway Cancer Diagnostics. Cancer Cell 2015;28:666-76. DOI: https://doi.org/10.1016/j.ccell.2015.09.018

Shen Z, Du W, Perkins C, et al. Platelet transcriptome identifies progressive markers and potential therapeutic targets in chronic myeloproliferative neoplasms. Cell Rep Med 2021;2:100425. DOI: https://doi.org/10.1016/j.xcrm.2021.100425

Gardella JE, Ghiso J, Gorgone GA, et al. Intact Alzheimer amyloid precursor protein (APP) is present in platelet membranes and is encoded by platelet mRNA. Biochem Biophys Res Commun 1990;173:1292-8. DOI: https://doi.org/10.1016/S0006-291X(05)80927-1

Canobbio I, Visconte C, Momi S, et al. Platelet amyloid precursor protein is a modulator of venous thromboembolism in mice. Blood 2017;130:527-36. DOI: https://doi.org/10.1182/blood-2017-01-764910

Sol N, Leurs CE, Veld SGI, et al. Blood platelet RNA enables the detection of multiple sclerosis. Mult Scler J Exp Transl Clin 2020;6:2055217320946784. DOI: https://doi.org/10.1177/2055217320946784

Margis R, Margis R, Rieder CR. Identification of blood microRNAs associated to Parkinson’s disease. J Biotechnol 2011;152:96-101. DOI: https://doi.org/10.1016/j.jbiotec.2011.01.023

Bury, L., & Gresele, P. (2022). The amazing genetic complexity of anucleated platelets. Bleeding, Thrombosis, and Vascular Biology, 1(2). https://doi.org/10.4081/btvb.2022.33

Downloads

Download data is not yet available.

Citations